吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1082-1097.doi: 10.13278/j.cnki.jjuese.20200265

• 地质与资源 • 上一篇    下一篇

黑龙江省西北部晚古生代I-A型花岗岩的成因及构造意义

孙超1, 苟军1, 孙德有1,2, 冯钊1, 田丽1   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 自然资源部东北亚矿产资源评价重点实验室, 长春 130061
  • 收稿日期:2021-03-26 出版日期:2021-07-26 发布日期:2021-08-02
  • 通讯作者: 孙德有(1965-),男,教授,博士生导师,主要从事火成岩与成矿方面的研究,E-mail:sundy@jlu.edu.cn E-mail:sundy@jlu.edu.cn
  • 作者简介:孙超(1997-),女,硕士研究生,主要从事火成岩方面的研究,E-mail:1125426929@qq.com
  • 基金资助:
    国家自然科学基金项目(41502045);中国核工业地质局核工业243大队项目(202003)

Petrogenesis and Tectonic Implication of Late Paleozoic I-A Type Granites in the Northwest Heilongjiang Province

Sun Chao1, Gou Jun1, Sun Deyou1,2, Feng Zhao1, Tian Li1   

  1. 1. College of Earth Science, Jilin University, Changchun 130061, China;
    2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun 130061, China
  • Received:2021-03-26 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41502045) and the Nuclear Industry 243 Brigade Project of China Nuclear Industry Geological Bureau (202003)

摘要: 本文以黑龙江省西北部大兴安岭塔源镇和小兴安岭二站乡地区花岗岩为研究对象,通过岩石学、U-Pb年代学及地球化学分析,揭示了古亚洲洋在该地区的俯冲—碰撞过程。塔源黑云母二长花岗岩U-Pb年龄为308 Ma,为晚石炭世侵入体,具有高硅、高碱的特征,富集轻稀土元素和大离子亲石元素,亏损重稀土元素和高场强元素,εHft)为0.8~2.5,地球化学特征显示其来源于增生的下地壳物质;二站乡二长花岗岩、碱长花岗岩U-Pb年龄分别为305和293 Ma,同样为高硅、高碱系列,富集轻稀土元素和大离子亲石元素,亏损重稀土元素和高场强元素,地球化学特征显示其来源于新生地壳。晚石炭世花岗岩为Ⅰ型花岗岩,早二叠世花岗岩为A型花岗岩。利用锆石δEu定量限定了塔源二长花岗岩和二站乡二长花岗岩的形成深度,分别为38.8 和34.7 km,而碱长花岗岩形成深度为28.7 km,暗示晚石炭世至早二叠世该地区经历了地壳的拉张减薄,记录了古亚洲洋的俯冲消亡与之后的后碰撞伸展作用。

关键词: U-Pb年代学, 地球化学, Ⅰ型花岗岩, A型花岗岩, 古亚洲洋, 黑龙江省西北部

Abstract: Petrology, geochemistry and U-Pb geochronology of the Great Xing'an Range Tayuan and the Little Xing'an Range Erzhan Country granites in the northwest Heilongjiang Province were undertaken to determine the subduction and collisional processes of the Paleo-Asian Ocean. The Tayuan granites are mainly biotite monzogranites with zircon U-Pb age of 308 Ma, which is a Late Carboniferous intrusion, and they are characterized by high silica and total alkali contents, enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), depletion in heavy rare earth elements (HREE) and high field strength elements (HFSE). Zircons from the Tayuan monzogranites have εHf(t) values ranging from 0.8 to 2.5, suggesting that the granitic magmas were generated by partial melting of newly-accreted lower crust. The Erzhan Country granites are dominantly monogranite and alkali-feldspar granite with zircon U-Pb ages of 305 Ma and 293 Ma. They have high silica and total alkali contents, and are characterised by enrichment in LREEs and LILE relative to HREE and HFSE, implying that they were generated by the melting of juvenile continental crust. The Late Carboniferous monogranites belong to I-type granite, and the Early Permian alkali-feldspar granite is typical A-type granite. Zircon δEu ratios can be used to estimate the melting depths of granites:The formation depth of Tayuan monzogranite and Erzhan Country monzogranite is 38.8 km and 34.7 km,respectively,while the alkali-feldspar granite formed at a shallow depth of 28.7 km. The crustal thinning during the Late Carboniferous to Early Permian might record the tectonic transition from subduction to post-collisional extension related to the final closure of the Paleo-Asian Ocean.

Key words: U-Pb geochronology, geochemistry, I-type granite, A-type granite, Paleo-Asian Ocean, the northwest of Heilongjiang Province

中图分类号: 

  • P595
[1] 景妍,张彦龙,王清海,等. 大兴安岭北段龙江地区早白垩世晶洞花岗岩的成因及构造意义[J].世界地质,2019, 38(3):655-667. Jing Yan, Zhang Yanlong, Wang Qinghai,et al. Petrogenesis of Early Cretaceous Miarolitic Monzogranite in Longjiang Region of Northern Great Xing'an Range and Its Tectonic Implications[J]. Global Geology, 2019, 38(3):655-667.
[2] 周传芳,杨华本,李向文,等. 大兴安岭北段新林地区晚石炭世花岗岩的岩石成因及地质意义[J].吉林大学学报(地球科学版),2020, 50(1):97-111. Zhou Chuanfang, Yang Huaben, Li Xiangwen,et al. Petrogenesis of Late Carboniferous Granitic Plutons in Xinlin Area, Northern Great Xing'an Range and Their Geological Significance[J]. Jouanal of Jilin University(Earth Science Edition), 2020,50(1):97-111.
[3] 刘永江,张兴洲,金巍,等. 东北地区晚古生代区域构造演化[J]. 中国地质,2010, 37(4):943-951. Liu Yongjiang, Zhang Xingzhou, Jin Wei, et al. Late Paleozoic Tectonic Evolution in Northeast China[J]. Geology in China, 2010, 37(4):943-951.
[4] Liu C, Xu M, Zhou Z, et al. Magmatic History During Late Carboniferous to Early Permian in the North of the Central Xing'an-Mongolia Orogenic Belt:A Case Study of the Houtoumiao Pluton, Inner Mongolia[J]. International Geology Review, 2018, 60(15):1918-1939.
[5] Ge W C, Wu F Y, Zhou C Y, et al. Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Mts[J]. Chinese Science Bulletin, 2005, 50(18):2097-2105.
[6] 徐备,赵盼,鲍庆中,等. 兴蒙造山带前中生代构造单元划分初探[J]. 岩石学报,2014, 30(7):1841-1857. Xu Bei, Zhao Pan, Bao Qingzhong, et al. Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB)[J]. Acta Petrologica Sinica, 2014, 30(7):1841-1857.
[7] 马永非,刘永江,秦涛, 等. 大兴安岭中段扎赉特旗地区石炭纪花岗岩的岩石成因、构造背景及对增生造山作用的指示[J]. 岩石学报,2018, 34(10):2931-2955. Ma Yongfei, Liu Yongjiang, Qin Tao, et al. Carboniferous Granites in the Jalaid Banner Area, Middle Great Xing'an Range, NE China:Petrogenesis, Tectonic Background and Orogeny Accretionary Implications[J]. Acta Petrologica Sinica, 2018, 34(10):2931-2955.
[8] Feng Z Q, Li W M, Liu Y J, et al. Early Carboniferous Tectonic Evolution of the Northern Heihe-Nenjiang-Hegenshan Suture Zone, NE China:Constraints from the Mylonitized Nenjiang Rhyolites and the Moguqi Gabbros[J]. Geological Journal, 2018, 53(3):1005-1021.
[9] 崔芳华,郑常青,徐学纯,等. 大兴安岭全胜林场地区晚石炭世岩浆活动研究:对兴安地块与松嫩地块拼合时间的限定[J].地质学报,2013, 87(9):1247-1263. Cui Fanghua, Zheng Changqing, Xu Xuechun, et al. Late Carboniferous Magmatic Activities in the Quanshenglinchang Area, Great Xing'an Range:Constrains on the Timing of Amalgamation Between Xing'an and Songnen Massifs[J]. Acta Geologica Sinica, 2013, 87(9):1247-1263.
[10] Li Y, Xu W L, Wang F, et al. Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen-Zhangguangcai Range Massif, NE China:Implications for the Amalgamation History of the Xing'an and Songnen-Zhangguangcai Range Massifs[J]. Lithos, 2014, 205:394-410.
[11] Dong Y, Ge W C, Zhao Guo C, et al. Petrogenesis and Tectonic Setting of the Late Paleozoic Xing'an Complex in the Northern Great Xing'an Range, NE China:Constraints from Geochronology, Geochemi-stry and Zircon Hf Isotopes[J]. Journal of Asian Earth Sciences, 2016, 115:228-246.
[12] 赵芝. 大兴安岭北部晚古生代岩浆作用及其构造意义[D]. 长春:吉林大学,2011. Zhao Zhi. Late Paleozoic Magmatism and Its Tectonic Significance in Northern Great Xing'an Range, Northeastern China[D]. Changchun:Jilin University, 2011.
[13] Liu Y J, Li W M, Feng Z Q, et al. A Review of the Paleozoic Tectonic in the Eastern Part of Central Asian Orogenic Belt[J]. Gondwana Research, 2017, 43:123-148.
[14] Miao L C, Fan W M, Liu D Y, et al. Geochronology and Geochemistry of the Hegenshan Ophiolitic Complex:Implications for Late-Stage Tectonic Evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6):348-370.
[15] 黄波,付冬,李树才,等. 内蒙古贺根山蛇绿岩形成时代及构造启示[J]. 岩石学报,2016, 32(1):158-176. Huang Bo, Fu Dong, Li Shucai, et al. The Age and Tectonic Implications of the Hegenshan Ophiolite in Inner Mongolia[J]. Acta Petrologica Sinica, 2016, 32(1):158-176.
[16] Jian P, Kr ner A, Windley B F, et al. Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China):A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral "Hegenshan Ophiolite"[J]. Lithos, 2012, 142/143:48-66.
[17] Zhou J B, Han J, Zhao G C, et al. The Emplacement Time of the Hegenshan Ophiolite:Constraints from the Unconformably Overlying Paleozoic Strata[J]. Tectonophysics, 2015, 662:398-415.
[18] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
[19] Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.
[20] Ludwig K R. User's Manual for Isoplot 3.1:A Geolocronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 4:25-32.
[21] Wu F Y, Yang Y H, Xie L W, et al. Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J]. Chemical Geology, 2006, 234(1/2):105-126.
[22] Vervoort J D, Blichert-Toft J. Evolution of the Depleted Mantle:Hf Isotope Evidence from Juvenile Rocks Through Time[J]. Geochimica et Cosmochimica Acta, 1999, 63(3/4):533-556.
[23] Griffin W L, Pearson N J, Belousova E, et al. The Hf Isotope Composition of Cratonic Mantle:LA-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147.
[24] Griffin W L, Wang X, Jackson S E, et al. Zircon Chemistry and Magma Mixing, SE China:In Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes[J]. Lithos, 2002, 61(3):237-269.
[25] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622.
[26] Whalen J B, Currie K L, Chappell B W. A-Type Granites:Geochemical Characteristics[J]. Contributions to Mineralogy and Petrology, 1987, 95:420-436.
[27] Tang M, Ji W Q, Chu X, et al. Reconstructing Crustal Thickness Evolution from Europium Anomalies in Detrital Zircons[J]. Geology, 2020, 49(1):76-80.
[28] Wyllie P J, Wolf M B, van der Laan S R. Conditions for Formation of Lonalites and Trondhjenites:Magmatic Sources and Products[M]. Oxford:Oxford University Press, 1997:256-266.
[29] 张旗,金惟俊,李承东,等. 再论花岗岩按照Sr-Yb的分类:标志[J]. 岩石学报,2010, 26(4):985-1015. Zhang Qi, Jin Weijun, Li Chengdong, et al. Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index[J]. Acta Petrologica Sinica, 2010, 26(4):985-1015.
[30] Feng Z Q, Jia J, Liu Y J, et al. Geochronology and Geochemistry of the Carboniferous Magmatism in the Northern Great Xing'an Range, NE China:Constraints on the Timing of Amalgamation of Xing'an and Songnen Blocks[J]. Journal of Asian Earth Sciences, 2015, 113:411-426.
[31] 赵芝,迟效国,潘世语,等. 小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义[J]. 岩石学报,2010, 26(8):2452-2464. Zhao Zhi, Chi Xiaoguo, Pan Shiyu, et al. Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Northwestern Lesser Xing'an Range[J]. Acta Petrologica Sinica, 2010, 26(8):2452-2464
[32] Nozaka T, Liu Y. Petrology of the Hegenshan Ophiolite and Its Implication for the Tectonic Evolution of Northern China[J]. Earth and Planetary Science Letters, 2002, 202(1):89-104.
[33] 张彦龙,葛文春,高妍,等.龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J].岩石学报,2010, 26(4):1059-1073. Zhang Yanlong, Ge Wenchun, Gao Yan, et al. Zircon U-Pb Ages and Hf Isotopes of Granites in Longzhen Area and Their Geological Implications[J]. Acta Petrologica Sinica, 2010, 26(4):1059-1073.
[34] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25:956-983.
[35] 孙德有,吴福元,李惠民,等. 小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J]. 科学通报,2000, 20:2217-2222. Sun Deyou, Wu Fuyuan, Li Huimin, et al. The Age of Post-Orogenic A-Type Granites in the Northwest Xiaoxing'an Mountains and Its Relationship with the Eastern Extension of the Suolun-Hegan Mountain-Zalaiite Collision Belt[J]. Chinese Science Bulletin, 2000, 20:2217-2222.
[36] 郭奎城,张文龙,杨晓平,等. 黑河市五道沟地区早二叠世A型花岗岩成因[J].吉林大学学报(地球科学版),2011, 41(4):1077-1083. Guo Kuicheng, Zhang Wenlong, Yang Xiaoping, et al. Origin of Early Permian A-Type Granite in the Wudaogou Area, Heihe City[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4):1077-1083.
[1] 张贵山, 邱红信, 温汉捷, 彭仁, 孟乾坤. 攀西红格钒钛磁铁矿矿田富钴硫化物中钴的地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1740-1752.
[2] 宫昀迪, 李碧乐, 李治华, 于润涛, 孙永刚, 张森. 大兴安岭北段小柯勒河花岗斑岩脉成因及地质意义:锆石U-Pb年龄、岩石地球化学及Hf同位素制约[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1753-1769.
[3] 张七道, 刘振南, 尹林虎. 深变质岩区地热流体化学特征及成因——以滇西陇川盆地温泉为例[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1838-1852.
[4] 李天军, 黄志龙, 王瑞, 苟红光, 张品, 殷越. 银根—额济纳旗盆地天草凹陷下白垩统巴音戈壁组有效烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2021, 51(4): 957-972.
[5] 史冬岩, 张坤, 张玉鹏, 高勇, 唐伟, 吕明奇. 黑龙江省浅覆盖区地物化特征与找矿标志——以黑河市340高地金矿化区为例[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1042-1053.
[6] 赵越, 刘敬党, 张国宾, 张艳飞. 张广才岭南部帽儿山岩体二长花岗岩年代学、地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1098-1118.
[7] 杨元江, 邓昌州, 李成禄, 张立, 高永志, 于喜洹. 大兴安岭大洋山钼矿区侵入岩年代学、岩石地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1064-1081.
[8] 张雪, 翁凯, 赵晓健, 杜守礼, 尚颖. 新疆东天山卡拉塔格二叠纪火山岩成因及构造意义[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1119-1138.
[9] 史冀忠, 牛亚卓, 许伟, 宋博, 王宝文. 银额盆地石板泉西石炭系白山组碳酸盐岩地球化学特征及其环境意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 680-693.
[10] 曾志杰, 陈雷. 南秦岭山阳—柞水矿集区夏家店金矿床微量-铂族元素地球化学特征及其对矿床成因的指示[J]. 吉林大学学报(地球科学版), 2021, 51(3): 704-722.
[11] 张超, 石绍山, 时溢, 魏明辉, 杨帆, 郇恒飞, 李文博, 王路远. 华北板块北缘东段中三叠世构造演化——来自辽宁法库地区侵入岩的证据[J]. 吉林大学学报(地球科学版), 2021, 51(3): 734-748.
[12] 田梦宇, 狄永军, 王帅, 贾一龙. 广西云开地区那蓬岩体黑云母二长花岗岩年代学、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2021, 51(3): 749-766.
[13] 邓红宾, 李培龙, 魏华财, 何文劲, 杨鹏涛, 李宁, 唐华. 东昆仑造山带低山头花岗岩体岩石地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(3): 767-782.
[14] 康鹏宇, 刘传朋, 梁成, 冯爱平, 刘同, 宗传攀. 沂蒙山区土壤质量地球化学评价方法[J]. 吉林大学学报(地球科学版), 2021, 51(3): 877-886.
[15] 谭晓淼, 高锐, 王海燕, 侯贺晟, 李洪强, 匡朝阳. 中亚造山带东段深地震反射剖面大炮揭露下地壳与Moho结构——数据处理与初步解释[J]. 吉林大学学报(地球科学版), 2021, 51(3): 898-908.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤洁,吕川,李昭阳,王晨野,张景成,李海毅. 基于灰色聚类与3S耦合方法的生态环境质量变化趋势研究--以吉林省大安市为例[J]. J4, 2008, 38(6): 1037 -1043 .
[2] 束龙仓,李 伟. 北塘水库库底地层渗透系数的随机特性分析[J]. J4, 2007, 37(2): 216 -0220 .
[3] 王金生,滕彦国,吴东杰. 不流动水与非平衡吸附作用对溶质运移影响的数值模型-MIENESOR[J]. J4, 2007, 37(2): 266 -270 .
[4] 苏小四,林学钰,董维红,万玉玉. 反向地球化学模拟技术在地下水14C年龄校正中应用的进展与思考[J]. J4, 2007, 37(2): 271 -277 .
[5] 柳行军,刘志宏,冯永玖,任延广,李春柏. 海拉尔盆地乌尔逊凹陷构造特征及变形序列[J]. J4, 2006, 36(02): 215 -0220 .
[6] 杨俊鹏,胡 克,刘玉英. 吉林西部盐碱化土壤碳酸盐的碳稳定同位素特征[J]. J4, 2006, 36(02): 245 -0249 .
[7] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[8] 刘金辉,孙占学,史维浚. 运用铀同位素研究砂岩型铀矿的几个问题[J]. J4, 2006, 36(04): 516 -520 .
[9] 赵 林,于 洋,闫 博,谭 欣,李若璞. 基于有机-无机杂化材料的硝酸还原酶电极的研究[J]. J4, 2007, 37(2): 355 -360 .
[10] 王心义, 杨 建,郭慧霞. 煤矸石山周围地下水污染状况[J]. J4, 2007, 37(2): 326 -330 .