J4

• 水文·工程·环境 • 上一篇    下一篇

人工冻土纵波波速与温度和含水率的关系

潘殿琦1,2,张祖培1,潘殿彩3,陈义民1,徐 瑞4   

  1. 1.吉林大学 建设工程学院,长春 130026;2.长春工程学院, 长春 130021;3.辽宁国际工程咨询中心, 沈阳 110000;4.东煤建筑基础工程公司, 长春 130062
  • 收稿日期:2005-12-26 修回日期:1900-01-01 出版日期:2006-07-26 发布日期:2006-07-26
  • 通讯作者: 潘殿琦

A Test Research on Longitudinal Wave Velocity of Artificial Frozen Clay Under Different Temperature and Moisture Conditions

PAN Dian-qi1,2,ZHANG Zu-pei1,PAN Dian-cai3,CHEN Yi-min4,XU Rui4   

  1. 1.College of Construction Engineering,Jilin University,Changchun 130026 China;2.Changchun Institute of Technology,Changchun 130021, China;3.Liaoning International Engineering Consulting Center, ShenYang 110000, China;4.DongMei Building Foundation Company,Changchun 130021, China
  • Received:2005-12-26 Revised:1900-01-01 Online:2006-07-26 Published:2006-07-26
  • Contact: PAN Dian-qi

摘要: 用SYC-2型超声波测试仪和20 kHz超声换能器实测了不同温度和不同含水率下冻结粉质粘土的纵波波速,对实验数据进行了分析。结果表明,含水率一定时,总的趋势是,冻结粉质粘土纵波波速随冻结温度的增加而增加,但局部有变化,-7℃是冻结粉质粘土波速增长的拐点,-20℃ 是冻结粉质粘土波速快速增长的拐点;冻结温度一定时,其纵波波速和冻土强度随含水率的增加有下降的趋势,含水率20%是纵波波速变化的拐点, 含水率大于24%时,纵波波速增长趋于平缓。

关键词: 冻结温度, 含水率, 冻结粉质粘土, 纵波波速

Abstract: Using SYC-2 type supersonic wave test instrument and 20 kHz energy transducer, the authors are able to measure the longitudinal wave velocity of frozen silty clay under different temperature and moisture conditions. Experiment results show that the velocity increases as frozen temperature decreasing in general when moisture is kept constant. The velocitytemperature curve has two turning points, which appear at -7℃ and 20℃ , respectively. The former indicates the velocity increasing and the latter is the indication of a faster velocity increasing. Fixing the frozen temperature, the velocity and strength of the frozen clay show a decreasing trend as moisture increasing. 20% moisture is the velocity changing turning point. When the moisture content is larger than 24% , the wave velocity increases gently.

Key words: frozen temperature, moisture content, frozen silty clay, longitudinal wave velocity

中图分类号: 

  • TU432
[1] 李杨, 王清, 王坛华. 冻土水热耦合模型数值求解及结果检验[J]. 吉林大学学报(地球科学版), 2015, 45(1): 207-213.
[2] 管彦武, 管烨, 高瑞, 孙晓华, 金旭. 根据地震纵波速度分析青藏高原地壳放射性生热率和地幔热状态[J]. J4, 2012, 42(2): 562-568.
[3] 程东会, 王文科, 侯光才, 杨红斌, 李瑛, 张二勇. 毛乌素沙地植被与地下水关系[J]. J4, 2012, 42(1): 184-189.
[4] 王生新, 柴寿喜, 王晓燕. 加筋条件和含水率对加筋土抗压强度和应力应变的影响[J]. J4, 2011, 41(3): 784-790.
[5] 王常明, 马栋和, 林容, 王科, 宋朋燃. 辽西地区黄土的强度与本构特性[J]. J4, 2010, 40(5): 1104-1109.
[6] 孙大志,李绪谦,商书波,潘晓峰. 张士灌区土壤中多环芳香烃菲(PHEs)的垂向分布与迁移[J]. J4, 2008, 38(2): 313-0318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!