J4

• 地质工程·环境工程 • 上一篇    下一篇

基于小波降噪的隧道围岩监测数据分析

张鹏1,李献勇2,陈剑平1   

  1. 1.吉林大学 建设工程学院,长春 130026;2.台州市诸永高速公路建设指挥部,浙江 台州 318000
  • 收稿日期:2008-01-08 修回日期:1900-01-01 出版日期:2008-11-26 发布日期:2008-11-26
  • 通讯作者: 张鹏

Monitoring Data Analysis of Tunnel Surrounding Rock Based on Wavelet Denoising

ZHANG Peng1, LI Xian-yong2,CHEN Jian-ping1   

  1. 1.College of Construction Engineering, Jilin University, Changchun 130026, China;2.Zhuyong Expressway Construction Headquarters of Taizhou Municipal, Taizhou,Zhejiang 318000, China
  • Received:2008-01-08 Revised:1900-01-01 Online:2008-11-26 Published:2008-11-26
  • Contact: ZHANG Peng

摘要: 隧道围岩监测数据中含有大量的随机误差,为了消除或削弱随机误差的干扰,通常对观测数据进行降噪处理。基于小波分析理论,利用小波降噪技术,以某隧道的围岩监测数据为例,选择了db3小波函数和heursure软阈值对围岩接触压力进行降噪处理,并用5-15-1BP神经网络对降噪前后的结果进行了预测比较,训练步数分别为2 448步和450步,未降噪的围岩压力预测的误差总体上要比降噪后的误差大。实际计算结果表明,小波去噪合理有效,能够敏感识别观测噪声和有用信息,适合于隧道围岩监测的数据分析。

关键词: 围岩监测, 小波分解, 去噪, Mallat算法

Abstract: There are many random errors in the monitoring data of tunnel surrounding rock. The monitoring data is usually denoised for reducing or eliminating the disturbance of the random errors. Based on the theory of wavelet transform, as an example, the monitoring data of a tunnel surrounding rock is processed by a technique of wavelet denoising with db3 wavelet function and heursure soft threshold. The result of pressure prediction is given by using 5-15-1 BP neural network for the original data and the de-noised data, and the training steps are 2 448 and 450 respectively. The error of the pressure prediction for the original data is larger than that for the de-noised data. The results show that the method of wavelet denoising is efficient and reliable, is sensitive to distinguish noise and useful information, is particularly suitable to analyze monitoring data of surrounding rock.

Key words: monitoring of surrounding rock, wavelet transform, noise reduction, Mallat algorithm

中图分类号: 

  • P642
[1] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
[2] 朱凯光, 李玥, 孟洋, 王凌群, 谢宾, 程宇奇. 最小噪声分离在航空电磁数据噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(3): 876-883.
[3] 崔永福, 李国发, 吴国忱, 尚帅, 赵锐锐, 罗莉莉. 基于面波模拟和曲波变换的去噪技术[J]. 吉林大学学报(地球科学版), 2016, 46(3): 911-919.
[4] 刘财, 崔芳姿, 刘洋, 王典, 刘殿秘, 张鹏. 基于低信噪比条件下新型Seislet变换的阈值去噪方法[J]. 吉林大学学报(地球科学版), 2015, 45(1): 293-301.
[5] 董烈乾, 李振春, 刘磊, 李志娜, 桑运云. 基于经验模态分解的曲波阈值去噪方法[J]. J4, 2012, 42(3): 838-844.
[6] 李海山, 吴国忱, 印兴耀. 形态分量分析在去除地震资料随机噪声中的应用[J]. J4, 2012, 42(2): 554-561.
[7] 郑百功, 佴磊, 汪茜, 陆威. 公路隧道围岩稳定性评价软件开发与应用[J]. J4, 2010, 40(5): 1133-1139.
[8] 巩向博,韩立国,王恩利,杜立志. 压制噪声的高分辨率Radon变换法[J]. J4, 2009, 39(1): 152-0157.
[9] 查显杰,傅容珊,戴志阳,刘 斌,邵志刚,薛霆虓. 基于小波包变换的SAR干涉图去噪研究[J]. J4, 2008, 38(3): 489-0494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!