J4 ›› 2011, Vol. 41 ›› Issue (6): 1831-1864.

• 兴蒙造山带及邻区中生代岩浆活动与金属成矿作用专辑 • 上一篇    下一篇

内蒙古莫尔道嘎地区早中生代岩浆作用及其地球动力学意义

佘宏全1|梁玉伟2|李进文1|关继东3|张德全1|杨郧城1|向安平1|金俊4| 谭刚1| 张斌1   

  1. 1.中国地质科学院矿产资源研究所, 北京100037;
    2.内蒙古第一地质矿产勘查开发院|呼和浩特010020;
    3.内蒙古自治区第六地质矿产勘查开发院, 内蒙古 海拉尔021008;
    4.北京地质矿产研究院|北京100020
  • 收稿日期:2011-06-06 出版日期:2011-11-26 发布日期:2011-11-26
  • 作者简介:佘宏全(1965-)|男|湖北江陵人|研究员|博士|主要从事多金属矿成矿作用与找矿方向研究|E-mail:hongquanshe@sohu.com
  • 基金资助:

    “十一·五”国家科技支撑计划项目(2006BAB01A10);国家重点自然科学基金项目(41030421);中国地质调查局地质调查项目(1212011120992)

The Early-Mesozoic Magmatic Activity at Moerdaoga District in Inner Mongolia and Its Geodynamic Implication

SHE Hong-quan1, LIANG Yu-wei2, LI Jin-wen1, GUAN Ji-dong3, ZHANG De-quan1, YANG Yun-cheng1, XIANG An-ping1, JIN Jun4, TAN Gang1, ZHANG Bin1   

  1. 1.Institute of Mineral Resources, Chinese Academy of Geoscience, Beijing100037,China;
    2.No.1 Institute of Geology and Mineral Resources Development, Inner Mongolia, Huhhot010020, China;
    3.The Sixth Institute of Geology and Mineral Resources Development, Inner Mongolia|Hailaer021008,Inner Mongolia, China;
    4.Beijing Institute of Geology for Mineral Resources, Beijing100020, China
  • Received:2011-06-06 Online:2011-11-26 Published:2011-11-26

摘要:

莫尔道嘎地处额尔古纳地块北段,该地区大量侵入岩和侵入[CD*2]变质杂岩以往被认为属新元古代,类型有风水山片麻杂岩、中基性杂岩、巨斑状钾长花岗岩、二长花岗岩岩。对该地区新元古代侵入岩和侵入-变质杂岩进行系统采样,采用LA-ICP-MS锆石U-Pb测年方法进行了测年研究。结果显示:研究区除个别岩体(混合岩化钾长花岗岩)为新元古代形成外,绝大部分以往认为的新元古代侵入岩或变质侵入杂岩为早中生代形成,揭示了研究区有强烈的早中生代构造岩浆作用。结合区域上同时代早中生代岩石的分布和年代学资料,额尔古纳和大兴安岭北段的早中生代侵入岩和变质杂岩可以分为243~246、210~229、200~205 Ma 3个时期,其中200~205 Ma一组最为发育。243~246 Ma一组主要为莫尔道嘎地区中基性杂岩,形成背景与二叠纪末期兴蒙造山之后伸展作用有关。而210~229 Ma的花岗岩和变质杂岩组合具有非常典型的大陆碰撞岩石组合特征:钙碱性系列过铝质、S型花岗岩,岩石副矿物以黑云母+角闪石+白云母为主,混合岩和淡色花岗岩(白云母花岗岩),深熔岩(莫尔道嘎巨斑状钾长花岗岩),缺乏同时期火山岩等;其形成与早中生代时期蒙古-鄂霍茨克洋封闭引起的陆陆碰撞有关。研究区早中生代花岗质侵入岩、变质杂岩特征及其同位素测年结果显示:蒙古-鄂霍茨克洋中段可能在中三叠世末期-晚三叠世早期封闭,这时已经开始发生陆陆碰撞,碰撞高峰时期可能在晚三叠世末期,早于以往认为的早侏罗世。

关键词: 大兴安岭, 莫尔道嘎, 早中生代, 花岗岩, LA-ICP-MS测年, 蒙古-鄂霍次克造山带, 大陆碰撞

Abstract:

Moerdaoga district is situated in the northern Eerguna block. There occur a lot of Precambrian intrusive and metamorphic rocks, including Fengshuishan complex, intermediate and mafic complex, macrophenocryst syenogranite, adamelite, etc. The authors collected a series of intrusive rock thought to form in Neoprotozoic period, and separated the zircons from the rocs for U-Pb dating by LA-ICP-MS method. The obtained ages suggested that the majority of rocks, which were thought to form in Neoprotozoic period, emplaced in Early Mesozoic period, except the migmatic syenogranite formed in Neoprozoic. It can be conclude that there took place intensive tectonic and magmatic activities in Moerdaoga and adjacent areas during the Early Mesozoic period. According their ages, the Early Mesozoic intrusive and metamorphic complexes in Eerguna and northern Daxinganling Mountain could be divided into such three groups as 243-246 Ma, 210-229 Ma, 200-205 Ma, and the 200-205 Ma group is the most extensive. The 243-246 Ma group is dominated by the intermediate and mafic intrusive complex, maybe related to the extension occurred in after the Late Permian orogensis of Xing’an-Mongol collision. The rocks formed from 200 Ma  to 229 Ma are dominated by granite and metamorphic complexes which have such characteristics formed in continental collision setting as calc-alkaline, per aluminous, S-type granite, migmatites, biotite, muscovite and horbenlende as well as lacking associated volcanic rocks. The geology and geochemistry of the Early Mesozoic granites and metamorphic complex indicate that the middle part of Mongol-Okhotsk Ocean (Transbaikal) might be closed at the end of Middle Triassic to the beginning of Late Triassic period when the collisional orogeny might start. The peak collision might took place at the end of Triassic period (200 Ma±). The confirmation of the Early Mesozoic granite and its geodynamic setting in Eerguna and northern Daxing’anling is also important to reconsider the geological evolution of the area.

Key words: Daxing’anling, Moerdaoga, Early-Mesozoic;granite, LA-ICP-MS dating, Mongol-Okhotsk orogenic belt, continental collision

中图分类号: 

  • P588.1
[1] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[2] 高飞, 刘永江, 温泉波, 李伟民, 冯志强, 范文亮, 汤超. 内蒙古突泉—科尔沁右翼中旗地区中生代花岗岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(3): 769-783.
[3] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[4] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[5] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[6] 高红梅, 兰永伟, 周莉, 孟丽岩. 温度作用下缺陷花岗岩热损伤:以甘肃北山缺陷花岗岩为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1795-1802.
[7] 杨凤超, 宋运红, 赵玉岩. 辽宁盘岭矿集区花岗岩锆石SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1429-1441.
[8] 赵院冬, 车继英, 吴大天, 许逢明, 赵君, 李士超. 小兴安岭西北部早—中侏罗世TTG花岗岩年代学、地球化学特征及构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1119-1137.
[9] 刘晨, 孙景贵, 邱殿明, 古阿雷, 韩吉龙, 孙凡婷, 杨梅, 冯洋洋. 大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义:元素、Hf同位素地球化学与锆石U-Pb同位素定年[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1138-1158.
[10] 郗爱华, 王明智, 葛玉辉, 李碧乐, 王泉, 朱靓. 黑龙江省五道岭地区花岗斑岩地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1159-1171.
[11] 叶霖, 刘玉平, 张乾, 鲍谈, 何芳, 王小娟, 王大鹏, 蓝江波. 云南都龙超大型锡锌多金属矿床中闪锌矿微量及稀土元素地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(3): 734-750.
[12] 杨梅, 孙景贵, 王忠禹, 赵世峰, 刘晨, 冯洋洋, 任泽宁. 大兴安岭西坡甲乌拉铜银铅锌矿床富碱花岗斑岩的成因及其地质意义:锆石U-Pb定年和地球化学特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 477-496.
[13] 汪岩, 杨晓平, 那福超, 付俊彧, 孙巍, 杨帆, 刘英才, 张广宇, 宋维民, 杨雅军, 钱程, 庞雪娇. 大兴安岭北段塔河地区晚寒武世中基性火山岩的发现及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 126-138.
[14] 张兴洲, 刘洋, 曾振, 张宏涛, 崔维龙. 大兴安岭北部±130 Ma火山岩的地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 1-13.
[15] 巫建华, 解开瑞, 祝洪涛, 吴仁贵, 刘帅. 大兴安岭南端红山子盆地流纹岩的成因:元素和Sr-Nd-Pb同位素制约[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1724-1739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!