吉林大学学报(地球科学版)

• 地质工程与环境工程 • 上一篇    下一篇

不同降雨条件下黄土高原浅层滑坡危险性预测评价

庄建琦1,2,彭建兵1,2,张利勇1   

  1. 1.长安大学地质工程与测绘学院/西部矿产资源与地质环境教育部重点实验室,西安710054;
    2.长安大学地质灾害防治研究院,西安710054
  • 收稿日期:2012-11-20 出版日期:2013-05-26 发布日期:2013-05-26
  • 作者简介:庄建琦(1982-),男,讲师,博士,主要从事地质灾害评价和预测方面的研究,E-mail:jqzhuang@chd.edu.cn
  • 基金资助:

    国家自然科学基金项目(41130753,41202244);中国博士后科学基金项目(2012M521728)

Risk Assessment and Prediction of the Shallow Landslide at Different Precipitation in Loess Plateau

Zhuang Jianqi1,2, Peng Jianbing1,2,  Zhang Liyong1   

  1. 1.School of Geology Engineering and Geomatics, Chang’an University/Key Laboratory of Western Mineral Resources and Geological Engineering Ministry of Education, Xi’an710054, China
    2.Institute of Geo-Hazards Mitigation and Research, Chang’an University, Xi’an710054, China
  • Received:2012-11-20 Online:2013-05-26 Published:2013-05-26

摘要:

黄土地区浅层滑坡发育非常广泛,由于其具有分布规律性差、前期变形迹象小、分布范围大、面小点多等特征,目前还无法进行有效预测,因此给黄土地区工程安全带来严重威胁。根据无限边坡模型,结合降雨入渗-土体强度衰减规律和GIS(地理信息系统)技术,构建了不同降雨条件下黄土地区浅层滑坡发育危险性评价模型,并将该评价模型应用到延河一级支流幸福川流域,预测在有效降雨量30、50、100、200 mm条件下,该流域浅层滑坡发育程度,并与当前较为流行的SINMAP模型(地形稳定性模型)进行对比。结果表明:①不稳定和潜在不稳定浅层滑坡主要分布在末级河流的两侧和源头,稳定和较稳定区域主要分布在一级河流河道两侧和塬面上;通过对比分析,SINMAP模型计算的结果与本文建立的模型在降雨强度30 mm时的计算结果较为一致。②在本文建立的模型评价结果中,随着有效降雨量的增加,Fs(稳定性系数)<1.00的不稳定区域所占比例逐渐增加,从30 mm的1.12%到200 mm的4.79%;相反,稳定区域则出现逐渐减少的趋势。③根据已发生灾害点的分布,随着有效降雨量的增加,研究区域已发生的灾害点分布在Fs<1.25的比例明显增加,从30 mm的62%到200 mm的88%,在SINMAP评价模型中,研究区域已发生的灾害点的64%分布在不稳定和潜在不稳定区域内,说明本文所建立的评价模型具有一定的精度。通过与SINMAP评价模型对比,本文建立的模型主要采用基于降雨入渗规律,而SINMAP评价模型主要基于降雨汇流过程,因此在利用过程中应根据区域特征选择利用。

关键词: 黄土高原, 浅层滑坡, 预测模型, 幸福川流域

Abstract:

The shallow landslide is universal in loess plateau with no distribution law and no distortion evidence. There is no good method to forecast the frequent occurrence of shallow landslide, causing risk to the residence, traffic and river ecology. The assessment and prediction formula of shallow landslide under different rainfall was established by means of the infinite slope model combined with rainfall infiltration-strength reduction law and GIS technology. Then the build assessment model was used to predict the landslide occurrence at the effective rainfall of 30 mm, 50 mm, 100 mm and 200 mm in Xingfuchuan watershed, a first tributary of Yanhe River. In order to check  the applicability of the predict formula, it was compared with the popular assessment model of shallow landslide. The results are as follows: ①the instable and potentially instable shallow landslides are mainly distributed in both sides and source of the final class river, the stable and more stable region are mainly distributed in both sides of the first class river and highland surface; by comparing, the assessment results of SINMAP model are more consistent with the assessment results obtained by the predict formula built in this paper at the effective rainfall of 30 mm. ②according to the assessment results obtained by the predict formula built in this paper, the area of unstable region (safe factor,Fs<1) is gradually increased from 1.12% at the effective rainfall of 30 mm to 4.79% at the effective rainfall of 200 mm; on the contrary, and the stable region presents a decreasing trend. ③according to the distribution of shallow landslides had occurred, the proportion of the happened shallow landslides that located in the unstable region are significantly increased with the growth of effective rainfall, from 62% at the effective rainfall of 30 mm to 88% at the effective rainfall of 200 mm; and 64% of the happened shallow landslides are located in the unstable region according to the assessment result of SINMAP model. So the assessment model built in this paper is more accurate compared with the SINMAP model. Finally, advantages and disadvantages of the established prediction formula in shallow landslide assessment in loess plateau were discussed.

Key words: loess plateau, shallow landslides, prediction model, Xingfuchuan watershed

中图分类号: 

  • P208
[1] 彭湘林, 范文, 魏亚妮, 田陆, 邓龙胜. 黄土高原城市工程地质分区——以铜川地区为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1480-1490.
[2] 张延军, 张通, 殷仁朝, 郑杰, 刘彤, 谢洋洋. 基于2 m测温法的地热异常区探测及地温预测[J]. 吉林大学学报(地球科学版), 2017, 47(1): 189-196.
[3] 张延军, 余海, 李建明, 于子望, 张佳宁. 深部水热型地热潜力区的GIS预测模型——以土耳其西安纳托利亚地区为例[J]. 吉林大学学报(地球科学版), 2016, 46(3): 855-864.
[4] 陈建平,严琼,李伟,尚北川,丁成武. 地质单元法区域成矿预测[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1083-1091.
[5] 丁建华,肖克炎,叶天竺,邓刚,娄德波. 模型区定量估算参数确定[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1111-1118.
[6] 彭翼,何玉良,曾涛,钟江文,许国丽,苏小岩,谌军,彭松民,李震. 河南省Mo矿区域成矿模式与综合信息预测模型[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1262-1275.
[7] 黄国成,董学发,吴小勇,李翔. 浙江省临安学川地区综合找矿预测模型[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1276-1282.
[8] 蔡煜琦,徐浩,郭庆银,朱鹏飞,汪远志,谢迎春. 江西省桃山地区花岗岩型铀矿预测及找矿方向[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1283-1291.
[9] 许长福, 李雄炎, 谭锋奇, 于红岩, 李洪奇. 任务驱动数据挖掘方法的提出及在低阻油层识别中的应用[J]. J4, 2012, 42(1): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!