Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (4): 1071-1079.doi: 10.13278/j.cnki.jjuese.201604107

Previous Articles     Next Articles

Petrological Characteristics and Research Significance of Detrital Clays in the Pluvial Seasonal River Sandstones

Liu Li, Bai Hanggai, Liu Na, Ming Xiaoran, Jiang Lingxu   

  1. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2016-06-25 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by National Natural Science Foundation of China(41572082)

Abstract:

Pluvial seasonal river sandstones are characterized by high content of detrital clays. According to petrofabric, detrital clays can be divided into mud intraclast, mechanically infiltrated clays and pedogenic mud aggregates. Mud intraclast is distributed mainly in the bottom of the river sandstone. The textures of mechanically infiltrated clays include ridges and bridges, geopetal fabrics, loose aggregates, anisopachous coatings of tangentially-accreted lamellae and massive aggregates. And spatial distribution of mechanically infiltrated clays is controlled by the fluctuating water table, the shifting and the incising of drainageways. Pedogenic mud aggregates are often distributed in sandstones and siltstones with texture or cross-bedding, in basal channel lags, trough fills of megaforms, and at the tops of channel-fill sequences. Mechanically infiltrated clays is one of the most important factors of causing the heterogeneity of river-facies sand reservoir. The erosion vulnerability of the "Pisha" sandstones is probably related with its high value of content of detrital smectite.

Key words: pluvial seasonal river sandstones, detrital clays, heterogeneity of reservoir, erosion vulnerability

CLC Number: 

  • P588.22

[1] Matlack K S, Houseknecht D W, Applin K R. Emplacement of Clay into Sand by Infiltration[J]. Journal of Sedimentary Petrology, 1989, 59(1): 77-87.

[2] Moraes M A S, Ros L F D. Depositional, Infiltrated and Authigenic Clays in Fluvial Sandstones of the Jurassic Sergi Formation,Recǒncavo Basin,Northeastern Brazil[M]// Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones.Oklahoma: Society for Sedimentary Geology,1992: 197-208.

[3] Müller R, Nystuen J P, Wright V P. Pedogenic Mud Aggregates and Paleosol Development in Ancient Dryland River Systems: Criteria for Interpreting Alluvial Mudrock Origin and Floodplain Dynamics[J]. Journal of Sedimentary Research, 2004, 74(4): 537-551.

[4] Friend P F. Distinctive Features of Some Ancient River Systems[J]. Fluvial Sedimentology, 1978, 5: 531-542.

[5] Nichols G J, Fisher J A. Processes, Facies and Architecture of Fluvial Distributary System Deposits[J]. Sedimentary Geology, 2007, 195(1/2): 75-90.

[6] 李华启, 姜在兴, 邱隆伟,等. 柯克亚凝析气田中新统西河甫组季节性河流沉积特征研究[J]. 新疆地质, 2003, 21(1): 69-73. Li Huaqi, Jiang Zaixing, Qiu Longwei, et al. Season River Sedimentation of Xihefu Formation in Kekeya Gas Condensate Field[J]. Xinjiang Geology, 2003, 21(1): 69-73.

[7] 高志勇, 冯佳睿, 周川闽,等. 干旱气候环境下季节性河流沉积特征: 以库车河剖面下白垩统为例[J]. 沉积学报, 2014, 32(6): 1060-1071. Gao Zhiyong, Feng Jiarui, Zhou Chuanmin, et al. Arid Climate Seasonal Rivers Deposition: A Case of Lower Cretaceous in Kuche River Outcrop[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1060-1071.

[8] 陈贤良, 纪友亮, 杨克明,等. 川西坳陷上侏罗统遂宁组洪水-漫湖沉积特征[J]. 沉积学报, 2014, 32(5): 912-920. Chen Xianliang, Ji Youliang, Yang Keming, et al. Flood-Overlake Sedimentary Characteristics of the Suining Formation (Lower Jurassic) in Western Sichuan Depression[J]. Acta Sedimentologica Sinica, 2014, 32(5): 912-920.

[9] 潘树新, 卫平生, 王天奇,等. 大型坳陷湖盆"洪水-河漫湖"沉积: 以干旱背景下的松南泉四段为例[J]. 地质论评, 2012, 58(1): 41-52. Pan Shuxin, Wei Pingsheng, Wang Tianqi, et al. Sedimentary Characteristics of Flood-Overlake in Large Depression Basin Taking the 4th Member, Quantou Formation, Lower Cretaceous,in Southern Songliao Basin as an Example[J]. Geological Review, 2012, 58(1): 41-52.

[10] Garzanti E. Non-Carbonate Intrabasinal Grains in Ar-enites: Their Recognition, Significance, and Relationship to Eustatic Cycles and Tectonic Setting[J]. Journal of Sedimentary Research, 1991, 61(6):514-517.

[11] Ketzer J M, Holz M, Morad S, et al. Sequence Stratigraphic Distribution of Diagenetic Alterations in Coal-Bearing, Paralic Sandstones: Evidence from the Rio Bonito Formation (Early Permian), Southern Brazil[J]. Sedimentology, 2003, 50(5): 855-877.

[12] Elghali M A K, Mansurbeg H, Morad S, et al. Distribution of Diagenetic Alterations in Fluvial and Paralic Deposits Within Sequence Stratigraphic Framework: Evidence from the Petrohan Terrigenous Group and the Svidol Formation, Lower Triassic, NW Bulgaria[J]. Sedimentary Geology, 2006, 190(1): 299-321.

[13] Morad S, Al-Ramadan K, Ketzer J M, et al. The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs: A Review of the Role of Depositional Fades and Sequence Stratigraphy[J]. Aapg Bulletin, 2010, 94(8): 1267-1309.

[14] Carvalho M V F, Ros L F D, Gomes N S. Carbonate Cementation Patterns and Diagenetic Reservoir Facies in the Campos Basin Cretaceous Turbidites, Offshore Eastern Brazil[J]. Marine & Petroleum Geology, 1995, 12(7): 741-758.

[15] Moraes M A S,Ros L F D.Infiltrated Clays in Fluvial Jurassic Sandstones of Reconcavo Basin, Northeastern Brazil[J]. Journal of Sedimentary Geology,1990, 60(6): 809-819.

[16] Andreis R R. Identificación E Importancia Geológica De Los Paleosuelos[D]. Sao Paulo: Editora da Universidade, 1981.

[17] Walker T R. Diagenetic Origin of Continental Red Beds[M]// The Continental Permain in Central, West, and South Europe. Amsterdam: Springer, 1976:240-282.

[18] Crone A J. Laboratory and Field Studies of Mechanically Infiltrated Matrix Clay in Arid Fluvial Sediments[D]. Colorado: University Colorado, 1975.

[19] Wolela A M, Gierlowski-Kordesch E H. Diagenetic History of Fluvial and Lacustrine Sandstones of the Hartford Basin (Triassic-Jurassic), Newark Supergroup, USA[J]. Sedimentary Geology, 2007, 197(Sup.1/2): 99-126.

[20] Al-Aasm I S, Abdallah H. The Origin of Dolomite Associated with Salt Diapirs in Central Tunisia: Preliminary Investigations of Field Relationships and Geochemistry[J]. Journal of Geochemical Exploration, 2006, 89(1):5-9.

[21] Gastaldo R A, Pludow B A, Neveling J. Mud Aggregates from the Katberg Formation, South Africa: Additional Evidence for Early Triassic Degradational Landscapes[J]. Journal of Sedimentary Research, 2013, 83(7):531-540.

[22] Gierlowski-Kordesch E H, Gibling M R. Pedogenic Mud Aggregates in Rift Sedimentation[M]// Sedimentation in Continental Rifts.Oklahoma: Society for Sedimentary Geology, 2002: 195-206.

[23] Rust B R, Nanson G C. Bedload Transport of Mud as Pedogenic Aggregates in Modern and Ancient Rivers[J]. Sedimentology, 1989, 36(2): 291-306.

[24] Williams G E. Piedmont Sedimentation and Late Quaternary Chronology in the Biskra Region of the Northern Sahara[J]. Zeitschrift Fur Geomorphologie, 1966, 10: 40-63.

[25] Nanson G C, Young D M, Price D M, et al. Stratigraphy, Sedimentology and Late-Quaternary Chrono-logy of the Channel Country of Western Queensland[M]//Fluvial Geomorphology of Australia.Sydney: Academic Press, 1986: 151-175.

[26] Wakelin-King G A, Webb J A. Threshold-Dominated Fluvial Styles in an Arid-Zone Mud-Aggregate River: The Uplands of Fowlers Creek, Australia[J]. Geomorphology, 2007, 85(1/2):114-127.

[27] Brooks G R. Alluvial Deposits of a Mud-Dominated Stream: The Red River, Manitoba, Canada[J]. Sedimentology, 2003, 50(3): 441-458.

[28] Ekes C. Bedload Transported Pedogenic Mud Aggregates in the Lower Old Red Sandstone in Southwest Wales[J]. Journal of the Geological Society, 1993, 150(3): 469-471.

[29] Marriott S B, Wright V P. Sediment Recycling on Siluro-Devonian Floodplains[J]. Journal of the Geological Society, 1996, 153(5): 661-664.

[30] Wolela A. Diagenetic Contrast of Sandstones in Hydrocarbon Prospective Mesozoic Rift Basins(Ethiopia, UK, USA)[J]. Journal of African Earth Sciences, 2014, 99: 529-553.

[31] 韩学士, 宋日升. 伊克昭盟砒砂岩侵蚀特征及治理对策[J]. 人民黄河, 1996 (1): 31-33. Han Xueshi, Song Risheng. The Erosional Features and Countermeasures of Arsenic Rock in Yikezhao League[J]. Yellow River, 1996 (1): 31-33.

[32] 王愿昌, 吴永红, 寇权,等. 砒砂岩分布范围界定与类型区划分[J]. 中国水土保持科学, 2007, 5(1):14-18. Wang Yuanchang, Wu Yonghong, Kou Quan, et al. Definition of Arsenic Rock Zone Borderline and Its Classification[J]. Science of Soil and Water Conservation, 2007, 5(1):14-18.

[33] 王立久, 李长明, 董晶亮. 砒砂岩分布及岩性特征[J]. 人民黄河, 2013, 35(12): 91-93. Wang Lijiu, Li Changming, Deng Jingliang. Study on Distribution and Lithologic Characters of Feldspathic Sandstone[J]. Yellow River, 2013, 35(12): 91-93.

[34] 张平仓, 刘玉民, 张仲子. 皇甫川流域侵蚀产沙特征及成因分析[J]. 水土保持通报, 1992, 12(2): 15-24. Zhang Pingcang, Liu Yumin, Zhang Zhongzi. The Features of Sediment Production and the Analysis of Genesis by Erosion in Huangfuchuan Watershed[J]. Bulletin of Soil and Water Conservation, 1992, 12(2): 15-24.

[35] 毕慈芬, 邰源林, 王富贵,等. 防止砒砂岩地区土壤侵蚀的水土保持综合技术探讨[J]. 泥沙研究, 2003(3): 63-65. Bi Cifen, Tai Yuanlin, Wang Fugui, et al. Probe to Integrated Soil Conservation Techniques for Soil Erosion Prevention in Soft Rock Areas[J]. Journal of Sediment Research, 2003 (3): 63-65.

[36] 肖培青, 姚文艺, 刘慧. 砒砂岩地区水土流失研究进展与治理途径[J]. 人民黄河, 2014, 36(10): 92-109. Xiao Peiqing, Yao Wenyi, Liu Hui. Research Progress and Harnessing Method of Soil and Water Loss in Pisha Sandstone Region[J]. Yellow River, 2014, 36(10): 92-109.

[37] 石迎春, 叶浩, 侯宏冰,等. 内蒙古南部砒砂岩侵蚀内因分析[J]. 地球学报, 2004, 25(6): 659-664. Shi Yingchun, Ye Hao, Hou Hongbing, et al. The Internal Cause of the Erosion in "Pisha" Sandstone Area, Southern Inner Mongolia[J]. Acta Geoscientica Sinica, 2004, 25(6): 659-664.

[38] 石建省, 叶浩, 王强恒,等. 水岩作用对内蒙古南部砒砂岩风化侵蚀的影响分析[J]. 现代地质, 2009, 23(1): 171-177. Shi Jiansheng, Ye Hao, Wang Qiangheng, et al. Effect of Water-Rock Interaction on the Weathering and Erosion of Pi-Sandstone Southern Inner Mongolia, China[J]. Geoscience, 2009, 23(1): 171-177.

[39] 王强恒, 孙旭, 刘昀,等. 室内模拟水岩作用对砒砂岩风化侵蚀的影响[J]. 人民黄河, 2013, 35(4):45-47. Wang Qiangheng, Sun Xu, Liu Yun, et al. Indoor Modeling the Effect of Water-Rock Interaction on the Weathering and Erosion of Pi-Sandstone[J]. Yellow River, 2013, 35(4):45-47.

[40] 马艳萍, 刘池洋, 王建强,等. 盆地后期改造中油气运散的效应: 鄂尔多斯盆地东北部中生界漂白砂岩的形成[J]. 石油与天然气地质, 2006, 27(2): 233-238. Ma Yanping, Liu Chiyang, Wang Jianqiang, et al. Effects of Hydrocarbon Migration and Dissipation in Later Reformation of a Basin: Formation of Mesozoic Bleached Sandstone in Northeastern Ordos Basin[J]. Oil and Gas Geology, 2006, 27(2): 233-238.

[41] 马艳萍, 刘池洋, 赵俊峰,等. 鄂尔多斯盆地东北部砂岩漂白现象与天然气逸散的关系[J].中国科学: 地球科学, 2007, 37(Sup.1): 127-138. Ma Yanping, Liu Chiyang, Zhao Junfeng, et al. The Relationship Between the Hydrocarbon Leakage in Northeastern Ordos Basin and the Dissipation of Natural Gas[J]. Scientia Sinica :Terrae, 2007, 37(Sup.1): 127-138.

[42] 刘池洋, 马艳萍, 吴柏林,等. 油气耗散: 油气地质研究和资源评价的弱点和难点[J]. 石油与天然气地质, 2008, 29(4): 517-526. Liu Chiyang, Ma Yanping, Wu Bolin, et al. Weakness and Difficulty of Petroleum Geology Study and Resource Assessment: Hydrocarbon Dissipation[J]. Oil and Gas Geology, 2008, 29(4): 517-526.

[43] 宋土顺, 刘立, 王玉洁,等. 鄂尔多斯盆地漂白砒砂岩特征及成因[J]. 石油与天然气地质, 2014, 35(5): 679-684. Song Tushun, Liu Li, Wang Yujie, et al. Characteristics and Genesis of the Bleached Pisha Sandstone in Ordos Basin[J]. Oil and Gas Geology, 2014, 35(5): 679-684.

[44] 李鹤, 张平宇, 程叶青. 脆弱性的概念及其评价方法[J]. 地理科学进展, 2008, 27(2): 18-25. Li He, Zhang Pingyu, Cheng Yeqing. Concepts and Assessment Methods of Vulnerability[J]. Progress in Geography, 2008, 27(2): 18-25.

[45] Rosa D D L, Moreno J A, Mayol F, et al. Assessment of Soil Erosion Vulnerability in Western Europe and Potential Impact on Crop Productivity Due to Loss of Soil Depth Using the Impe1ERO Model[J]. Agriculture Ecosystems & Environment, 2000, 81(3): 179-190.

[46] 刘小喜, 陈沈良, 蒋超,等. 苏北废黄河三角洲海岸侵蚀脆弱性评估[J]. 地理学报, 2014, 69(5): 607-618. Liu Xiaoxi, Chen Shenliang, Jiangchao, et al. Vulnerability Assessment of Coastal Erosion Along the Abandoned Yellow River Delta of Northern Jiangsu, China[J]. Acta Geographica Sinica, 2014, 69(5): 607-618.

[47] 欧阳杰, 朱诚, 彭华,等. 湖南崀山丹霞地貌岩体抗酸侵蚀脆弱性的实验研究[J]. 地球科学进展, 2011, 26(9): 965-970. Ouyang Jie, Zhu Cheng, Peng Hua, et al. Experimental Research on Vulnerability of Danxia Rocks to Resistance Against Acid Erosion in Langshan, Hunan Province[J]. Advances in Earth Science, 2011, 26(9): 965-970.

[48] 叶浩, 石建省, 李向全,等. 砒砂岩岩性特征对抗侵蚀性影响分析[J]. 地球学报, 2006, 27(2): 145-150. Ye Hao, Shi Jiansheng, Li Xiangquan, et al. The Effect of Soft Rock Lithology Upon Its Anti-Erodibility[J]. Acta Geoscientica Sinica, 2006, 27(2): 145-150.

[49] 叶浩, 石建省, 王贵玲,等. 砒砂岩化学成分特征对重力侵蚀的影响[J]. 水文地质工程地质, 2006, 33(6): 5-8. Ye Hao, Shi Jiansheng, Wang Guiling, et al. Effect of Chemical Compositions of Pisha Sandstone on the Gravity Erosion[J]. Hydrogeology & Engineering Geology, 2006, 33(6): 5-8.

[50] 燕守勋, 曲永新, 韩胜杰. 蒙皂石含量与膨胀土膨胀势指标相关关系研究[J]. 工程地质学报, 2004, 12(1): 74-82. Ye Shouxun, Qu Yongxin, Han Shengjie. A Study on the Relationship Between Smectite Content and Swell Potential Indices[J]. Journal of Engineering Geology, 2004, 12(1): 74-82.

[51] Chamley H. Clay Sedimentology[M]. Amsterdam: Springer, 1990.

[52] 赵振宇, 郭彦如, 王艳,等. 鄂尔多斯盆地构造演化及古地理特征研究进展[J]. 特种油气藏, 2012, 19(5): 15-20. Zhao Zhenyu, Guo Yanru, Wang Yan, et al. Study Progress in Tectonic Evolution and Paleogeography of Ordos Basin[J]. Special Oil & Gas Reservoirs, 2012, 19(5): 15-20.

[53] 骆满生, 卢隆桥, 贾建,等. 中国中生代沉积盆地演化[J]. 地球科学:中国地质大学学报, 2014, 39(8): 954-976. Luo Mansheng, Lu Longqiao, Jia Jian, et al. Evolution of Sedimentary Basins in China During Mesozoic[J]. Earth Science: Journal of China University of Geosciences, 2014, 39(8): 954-976.

[54] Perri F, Critelli S, Perrone V, et al. Triassic Redbeds in the Malaguide Complex (Betic Cordillera-Spain): Petrography, Geochemistry and Geodynamic Implications[J]. Earth-Science Reviews, 2013, 117: 1-28.

[55] Madhavaraju J, Ramasamy S, Ruffell A, et al. Clay Mineralogy of the Late Cretaceous and Early Tertiary Successions of the Cauvery Basin (Southeastern India): Implications for Sediment Source and Palaeoclimates at the K/T Boundary[J]. Cretaceous Research, 2002, 23(2): 153-163.

[56] Gao Y, Wang C, Liu Z, et al. Clay Mineralogy of the Middle Mingshui Formation (Upper Campanian to Lower Maastrichtian) from the Skin Borehole in the Songliao Basin, NE China: Implications for Palaeoclimate and Provenance[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2013, 385(5): 162-170.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XUE Yong-chao, CHENG Lin-song. The Diagenetic Reservoir Facies of Chang 8 Reservoir in Baibao Oilfield[J]. J4, 2011, 41(2): 365 -371 .
[2] JIANG Ji-yi, ZHANG Yu-dong, GU Hong-biao, ZUO Lan-li. Study on the Evaluation Model of Groundwater Environment Evolution Pattern Based on Grey Correlation Entropy[J]. J4, 2009, 39(6): 1111 -1116 .
[3] CONG Yuan, DIAO Peng-da, CHEN Jian-ping, DONG Qing-ji. Grade-Tonnage Model of Bauxite Deposits in China[J]. J4, 2009, 39(6): 1042 -1048 .
[4] LIU Jian-feng, CHI Xiao-guo, ZHOU Yan, WANG Tie-fu,JIN Wei, ZHOU Jian-bo, DONG Chun-yan, LI Guang-rong. Rb-Sr Isotopic Dating of the Jinlin Pluton by Whole Rock-Hornblende Method in the Northeast Xiao Hinggan Mountains[J]. J4, 2005, 35(06): 690 -0693 .
[5] HUANG Guan-xing, SUN Ji-chao, ZHANG Ying, LIU Jing-tao, ZHANG Yu-xi, JING Ji-hong. Content and Relationship of Heavy Metals in Groundwater of Sewage Irrigation Area in Pearl River Delta[J]. J4, 2011, 41(1): 228 -234 .
[6] BI Hai-Tao, ZHANG Lan-Ying, LIU Na, YANG Guo-jun, XU Guo-xin, SHU Bo-lin. Improvement of PVA-H3BO3 Immobilization Method with Inorganic Materials[J]. J4, 2011, 41(1): 241 -246 .
[7] HE Zhong-hua,LIU Zhao-jun,GUO Hong-wei,HOU Wei,DONG Lin-sen. Provenance Analysis of Middle Jurassic Sediments and Its Geological Significance in Mohe Basin[J]. J4, 2008, 38(3): 398 -0404 .
[8] CHEN Xiang, XU Zhao-yi, ZHANG Jie-kun. Comprehensive Classification Criteria and Method to the Building Site of Large Water-Sealed Underground Oil Tank[J]. J4, 2012, 42(1): 177 -183 .
[9] KANG Li-ming,REN Zhan-li. Study on Multi-Parameters Discrimination Method for Flow Units-Taking W93 Wellblock in Ordos Basin as An Example[J]. J4, 2008, 38(5): 749 -0756 .
[10] XIE Zhong-lei, CHEN Zhuo,SUN Wen-tian, YIN Bo. Content of Fluoride in Tea Leaves and Distribution of Fluoride in Soils from Different Tea Gardens[J]. J4, 2008, 38(2): 293 -0298 .