Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (4): 1124-1138.doi: 10.13278/j.cnki.jjuese.201604112

Previous Articles     Next Articles

Hydrothermal Activities and Mineralization in the Arc and Back-Arc Basin Systems, Western Pacific

Shi Xuefa1,2, Li Bing1, Yan Quanshu1,2, Ye Jun1   

  1. 1. Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, Shandong, China;
    2. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, Shandong, China
  • Received:2016-04-21 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by COMRA Research Program (DY125-12-R-05) and Taishan Scholar Program of Shandong Province(2015-11)

Abstract:

Island arc and back-arc basin systems are the important seafloor environments for the development of hydrothermal sulfide resources. In this study, we reviewed the results of international investigations and numerous studies on the hydrothermal activities and the accompanying sulfide mineralization processes in the arc and back-arc basin systems over the past few decades. We summarized geographical distributions, tectonic environments, water depths, vent fluid temperatures and phase separation process for the hydrothermal activities, and the sulfide types, element accumulation characteristics, ore body scales and the main ore-forming control factors for the hydrothermal sulfides in the systems. We suggested that, the variation trendy for the water depth of vents in the systems is the same as that for maximum vent fluid temperatures, and both of them are related to the phase separation process. Hydrothermal sulfides are mainly dominated by Fe-Zn-Pb type, and significantly enriched in the metal elements such as Zn, Pb, Au, Ag, etc. Hydrothermal mineralization is mainly controlled by the following five factors, island arc and back-arc magmatism, phase separation, basement rock, back-arc spreading rate and sediment.

Key words: Western Pacific, island arc and back-arc basin system, hydrothermal activity, sulfide, phase separation, ore controlling factors, western pacific

CLC Number: 

  • P67

[1] Monecke T, Petersen S, Hannington M D. Constraints on Water Depth of Massive Sulfide Formation: Evidence from Modern Seafloor Hydrothermal Systems in Arc-Related Settings[J]. Economic Geology, 2014, 109(8): 2079-2101.

[2] Hannington M, Jamieson J, Monecke T, et al. The Abundance of Seafloor Massive Sulfide Deposits[J]. Geology, 2011, 39:1155-1158.

[3] Hoagland P, Beaulieu S, Tivey M A, et al. Deep-Sea Mining of Seafloor Massive Sulfides[J]. Marine Policy, 2010, 34(3): 728-732.

[4] Kim J, Son S K, Son J W, et al. Venting Sites Along the Fonualei and Northeast Lau Spreading Centers and Evidence of Hydrothermal Activity at an Off-Axis Caldera in the Northeastern Lau Basin[J]. Geochemical Journal, 2009, 43(1): 1-13.

[5] Fouquet Y, Charlou J, Stackelberg U V, et al. Metallogenesis in Back-Arc Environments: The Lau Basin Example[J]. Economic Geology (Plus the Bulletin of the Society of Economic Geologists), 1993, 88(8): 2154-2181.

[6] Lisitsyn P, Malahoff A, Bogdanov Y A, et al. Hydrothermal Formations in the Northern Part of the Lau Basin, Pacific Ocean[J]. International Geology Review, 1992, 34(8): 828-847.

[7] Verati C, Lancelot J, Fouquet Y. Pb Isotope Study of Mineralizations at Oceanic Hydrothermal Vent Fields and Heterogeneities in the North Fiji Back-Arc Basin (SW Pacific)[J]. Comptes Rendus De l Academie Des Sciences Serie Ⅱ, 1994, 319(8): 921-928.

[8] Yukihiro N, Jun-Ichiro I, Takayoshi K, et al. Hydrothermal Plumes Along the North Fiji Basin Spreading Axis[J]. Nature, 1989, 342(6250): 667-670.

[9] Halbach P, Hansmann W, Köppel V, et al. Whole-Rock and Sulfide Lead-Isotope Data from the Hydrothermal JADE Field in the Okinawa Back-Arc Trough[J]. Mineralium Deposita, 1997, 32(1): 70-78.

[10] Kimura M, Uyeda S, Kato Y, et al. Active Hydrothermal Mounds in the Okinawa Trough Back-Arc Basin, Japan[J]. Tectonophysics, 1988, 145(3): 319-324.

[11] Scott S D, Binns R A. Hydrothermal Processes and Contrasting Styles of Mineralization in the Western Woodlark and Eastern Manus Basins of the Western Pacific[J]. Geological Society London Special Publications, 1995, 87(1): 191-205.

[12] Both R, Crook K, Taylor B, et al. Hydrothermal Chimneys and Associated Fauna in the Manus Back-Arc Basin, Papua New Guinea[J]. Eos, Transactions American Geophysical Union, 1986, 67(21): 489-490.

[13] Horibe Y, Kim K R, Craig H. Hydrothermal Methane Plumes in the Mariana Back-Arc Spreading Center[J]. Nature, 1986, 324(6093): 131-133.

[14] Baker E T, German C R. On the Global Distribution of Hydrothermal Vent Fields[C]// German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans:Geophysical Monograph Series 148.Washington, DC: American Geophysical Union, 2004: 245-266.

[15] Beaulieu S E, Baker E T, German C R. Where Are the Undiscovered Hydrothermal Vents on Oceanic Spreading Ridges? [J].Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 121: 202-212.

[16] Halbach P Nakamura, Ko-ichi Wahsner M, et al. Probable Modern Analogue of Kuroko-Type Massive Sulphide Deposits in the Okinawa Trough Back-Arc Basin[J]. Nature, 1989, 338:496-499.

[17] Iizasa K, Fiske R S, Ishizuka O, et al. A Kuroko-Type Polymetallic Sulfide Deposit in a Submarine Silicic Caldera[J]. Science, 1999, 283(5404):975-977.

[18] 侯增谦. 现代与古代海底热水成矿作用[M]. 北京:地质出版社, 2003. Hou Zengqian. Modern and Ancient Submarine Hydrothermal Mineralization[M]. Beijing:Geological Publishing House,2003.

[19] Horibe Y, Kim K R, Craig H. Hydrothermal Methane Plumes in the Mariana Back-Arc Spreading Center[J]. Nature, 1986, 324(6093):131-133.

[20] Sakai H, Gamo T, Kim E-S, et al. Venting of Carbon Dioxide-Rich Fluid and Hydrate Formation in Mid-Okinawa Trough Back-Arc Basin[J]. Science, 1990,248(4959):1093-1096.

[21] Fouquet Y, Stackelberg U, Von Charlou J, et al. Hydrothermal Activity and Metallogenesis in the Lau Back-Arc Basin[J]. Nature, 1991, 349(6312): 778-781.

[22] 吴世迎.世界海底热液硫化物资源[M]. 北京:海洋出版社, 2000. Wu Shiying. Global Submarine Hydrothermal Sulfide Resources[M]. Beijing: Ocean Press, 2000.

[23] 吴世迎.马里亚纳海槽海底热液烟囱物研究[M]. 北京:海洋出版社, 1995. Wu Shiying. Study of Hydrothermal Chimneys in the Mariana Trough[M] . Beijing: Ocean Press, 1995.

[24] 曾志刚. 海底热液地质学[M]. 北京:科学出版社,2011. Zeng Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.

[25] Beaulieu, Stace E. InterRidge Vents Database[DB/OL]. https://www.interridge. org /zh-hans/IRvents_database, 2015.

[26] Koschinsky A, Garbe-Schönberg D, Sander S, et al. Hydrothermal Venting at Pressure-Temperature Conditions Above the Critical Point of Seawater, 5°S on the Mid-Atlantic Ridge[J]. Geology, 2008, 36(8): 615-618.

[27] Foustoukos D I , Seyfried W E. Fluid Phase Separation Processes in Submarine Hydrothermal Systems[J]. Reviews in Mineralogy and Geochemistry, 2007, 65(1):213-239.

[28] Bischoff J L, Rosenbauer R J. Liquid-Vapor Relations in the Critical Region of the System NaCl-H2O from 380 to 415℃: A Refined Determination of the Critical Point and Two-Phase Boundary of Seawater[J]. Geochimica et Cosmochimica Acta, 1988, 52(8): 2121-2126.

[29] Ellis A J, Golding R M. The Solubility of Carbon Dioxide Above 100°C in Water and in Sodium Chloride Solutions[J]. American Journal of Science, 1963, 261:47-60.

[30] Hannington M D, Ronde C, Petersen S. Seafloor Tectonics and Submarine Hydrothermal Systems[J]. Economic Geology, 2005,100 : 111-141.

[31] Fouquet Y, Cambon P, Etoubleau J, et al. Geodiversity of Hydrothermal Processes Along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit[C]// Peter A Rona, Colin W Devey, Jérôme Dyment, et al. Geophysical Monograph Series 188.Washington, DC: American Geophysical Union , 2010: 321-367.

[32] Hannington M D, Alan G, Herzig P M, et al. Comparation of the TAG Mound and Stockwork Complex with Cyprus-Type[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 1998, 158: 389-415.

[33] Petersen S, Herzig P M, Hannington M D, et al. Submarine Vein-Type Gold Mineralization Near Lihir Island, New Ireland Fore-Arc, Papua New Guinea[J]. Economic Geology, 2002, 97: 1795-1813.

[34] Yang K, Scott S D. Possible Contribution of a Metal-Rich Magmatic Fluid to a Sea-Floor Hydrothermal System[J]. Nature, 1996, 383(6599): 420-423.

[35] Susan E Humphris, Robert A Zierenberg, Lauren S Mullineaux, et al. Subseafloor Processes in Mid-Ocean Ridge Hydrothermal Systems[C]//Alt J C. Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions:Geophysical Monograph Series 91.Washington, D C: American Geophysical Union, 1995: 85-114.

[36] 曾志刚, 蒋富清, 翟世奎,等. 冲绳海槽Jade热液活动区块状硫化物的铅同位素组成及其地质意义[J]. 地球化学, 2000, 29(3): 239-245. Zeng Zhigang, Jiang Fuqing, Zhai Shikui, et al. Lead Isotopic Compositions of Massive Sulfides from the Jade Hydrothermal Filed in the Okinawa Trough and Its Geological Implications[J]. Geochimica,2000, 29(3): 239-245.

[1] Li Liang, Sun Fengyue, Li Shijin, Li Bile, Qian Ye, Wang Chao, Zhao Tuofei, Yu Lu, Wang Guan, Huo Lian, Wang Li, Zhang Yajing, Wang Linlin, Li Haoran, Yan Jiaming, Li Yujin, Zhang Dexin, Yang Yanqian, Wang Wei. Metallogenic Geological Conditions and Regularity of Magmatic Cu-Ni Sulfide Deposits in the East Kunlun Metallogenic Belt [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(5): 1461-1496.
[2] Zhang Guishan, Qiu Hongxin, Wen Hanjie, Peng Ren, Meng Qiankun. Geochemical Characteristics and Geological Significance of Cobalt in Cobalt-Rich Sulfide of Hongge V-Ti Magnetite Ore Field, Panxi [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(6): 1740-1752.
[3] Hong Mei, Ren Xuan, Yang Huiping. Remediation of Cr(Ⅵ) Contaminated Groundwater by Stable and Loaded FeS [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1182-1188.
[4] Lu Jilong, Fan Yuchao, Xiong Yuxin, Yin Yechang, Zhao Yuyan. Chemical Phase of Au in Rock/Ore and Significance of Yangshan Gold Deposit, Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 992-1000.
[5] Yin Zhengxin, Li Zhengyuan, Shen Zezhong, Tang Minqiang, Wei Wei, Liu Qiang, Xie Mingrui, Cai Zhourong. Asymmetric Geological Developments and Their Geneses of the Parece Vela Basin in Western Pacific Ocean [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 218-229.
[6] Liu Zhaojun, Sun Pingchang, Liu Rong, Meng Qingtao, Hu Fei. Research on Oil Shale Features and Metallogenic Differences in Dunhua-Mishan Fault Zone Basins [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1090-1099.
[7] Hao Libo, Tian Mi, Zhao Yuyan, Lu Jilong, Sun Liji, Zhao Xinyun. Geochemical Characteristics and Significance of Pyroxene from Major Metallogenetic Intrusions in Hongqiling, Jilin Province, China [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 95-105.
[8] Hao Libo,Wu Chao,Sun Liji,Jiang Yanming,Zhao Yuyan,Lu Jilong,Li Jie. Re-Os Isotope Characteristics of Hongqiling Cu-Ni Sulfide Deposit in Jilin Province and Its Significance [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 507-517.
[9] LIU Jin-yu, XI Ai-hua, GE Yu-hui, SUN Hong-tao, GONG Peng-hui. Mineralization Age of the No.3 Ore-bearing Intrusion and Its Petrological Significance in Hongqiling Cu-Ni Sulfide Deposits, Jilin Province [J]. J4, 2010, 40(2): 321-326.
[10] YE Si-yuan, ZHOU Yong-qing, DING Xi-gui. Distributions of Simultaneously Extracted Metals(SEM) and Its Implication for Bioavailability in the Jiaojiang Estuary of Zhejiang [J]. J4, 2006, 36(04): 592-598.
[11] YANG Yan-chen,SUN De-you,MA Zhi-hong,XU Wen-liang. The Forming Mechanisms of Hongqiling Mafic and UltramaficIntrusive Bodies and Cu-Ni Sulfide Deposits [J]. J4, 2005, 35(05): 593-600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Feng-jun, LI Qing, MA Jiu-tong, YU Guang-ju. Experimental Study on Treatment of Furfural Wastewater with Membrane Distillation[J]. J4, 2006, 36(02): 270 -0273 .
[2] LI Xian-zhou,LIU Yan,LIU Li-hua,NING Wei-kun,FAN Hai. The Preparation and Characterization of the Kaolin-Hydrazine Intercalation Complex[J]. J4, 2006, 36(04): 659 -662 .
[3] LU Shuang-fang, LI Ji-jun, XUE Hai-tao, XU Li-heng. Chemical Kinetics of Carbon Isotope Fractionation of Oil-Cracking Methane and Its Initial Application[J]. J4, 2006, 36(05): 825 -829 .
[4] YU Ping, LI Rui-lei, FU Lei, HAO Xue, ZHANG Xiang-jun,LIAN Guo-fen. Regional Tectonic Characteristics and Significance of North Harbin Area in Songliao Basin: Evidenced from Long Seismic Profiles[J]. J4, 2005, 35(05): 611 -615 .
[5] ZHANG Yuan-qing, SONG Bing-zhong, WANG Yu-fu, ZHANG Ning. Metallogenetic Rules and Prediction of Gold Deposits Around Tongshi Complex,Western Shandong Province[J]. J4, 2010, 40(6): 1287 -1294 .
[6] LI Jian-ping, LI Tong-lin, ZHANG Hui, XU Kai-jun. Study and Application of the TEM Forward and Inversion Problem of Irregular Loop Source over the Layered Medium[J]. J4, 2005, 35(06): 790 -0795 .
[7] DING Zhi-hong,FENG Ping,MAO Hui-hui. Research and Application of a Method Considering Runoff Distribution Through A Year During Partitioning Runoff into Abundant and Low State[J]. J4, 2009, 39(2): 276 -0280 .
[8] REN He-jun, LIU Na, GAO Song,ZHANG Lan-ying,ZHANG Yu-ling,ZHOU Rui. Degradation of Polychlorinated Biphenyls and Confirm of bphA1 Gene Core by Pseudomonas DN2[J]. J4, 2009, 39(2): 312 -0316 .
[9] Huang Qibo, Qin Xiaoqun, Liu Pengyu, Kang Zhiqiang, Tang Pingping. Applicability of Karst Carbon Sinks Calculation Methods in Semi-Arid Climate Environment[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 240 -246 .
[10] ZHONG Yu-hong,FANG Chun-sheng,QIU Li-min, LV Li-sha, ZHANG Zi-yi, DONG De-ming,YU Lian-gui, LIU Hui, LIU Chun-yang, SU Hong-shi, ZHAO Jing. Application of Electron Microscopic Analysis for the Sources Apportionment of Atmospheric Particles[J]. J4, 2008, 38(3): 473 -0478 .