Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (5): 1483-1492.doi: 10.13278/j.cnki.jjuese.20170109

   

Inversion of Mariana Trench Seabed Terrain Using Gravity Anomalies

Fan Diao1, Li Shanshan1, Meng Shuyu2, Xing Zhibin1, Feng Jinkai1   

  1. 1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
    2. Xi'an Aerors Data Technology Co. Ltd, Xi'an 710054, China
  • Received:2018-01-04 Published:2018-11-20
  • Supported by:
    Supported by National Natural Science Foundation of China (41274029, 41404020, 41774018, 41504018), State Key Laboratory of Geo-Information Engineering (SKLGIE2016-M-3-2) and School Project of Information Engineering University(2017503902, 2016601002)

Abstract: In order to overcome the shortcomings of using ships to measure sea-depth with low efficiency and high cost, the authors selected the Mariana Trench area formed by the Western Pacific plate dive to the Philippine plate as the experimental area, and used gravity anomalies data to inverse the sea-depth according to the gravity-geologic method. The density difference constant of the GGM (gravity-geologic method) model was determined to be by using the remove-restore technique. The differences between the GGM sea depth model, the ETOPO1 model and the model 1 which directly gridded dispersed ship data were analyzed and compared, and the landforms of the "challenger abyss" trench were studied based on the inversion results. The result shows that the seafloor topography computed by GGM model is superior to that by the ETOPO1 model, and even better than the results of the directly gridding of the ship survey data. The relative error of the model is not related to sea depth, but affected obviously by the change of seafloor topography. The sea-depth differences between the models are large in the area where the ship data are missing or too sparse. The landforms on the both sides of the "challenger abyss" trench are different. In the south side, when the water depth is less than 5 000 m, the gentle slope is about 2°-5°; while the water depth is greater than 5 000 m, the slope is increased significantly to about 10°-15°. In the north side, the slope is about 10°-15°. There is a buffer zone near latitude.

Key words: gravity-geologic method, density difference contrast, downward continuation, remove-restore technique, Mariana trench

CLC Number: 

  • P631.1
[1] 翟国君,黄谟涛,欧阳永忠,等. 卫星测高原理及其应用[J]. 海洋测绘, 2002, 22(1):57-62. Zhai Guojun, Huang Motao, Ouyang Yongzhong, et al. The Principle of Satellite Altimetry and Its Applications[J]. Hydrographic Surveying and Charting, 2002, 22(1):57-62.
[2] 许惠平,刘万崧,周云轩,等. 卫星测高重力资料及其在南海莺-琼盆地中的应用[J]. 吉林大学学报(地球科学版), 2003, 33(3):368-371. Xu Huiping, Liu Wansong, Zhou Yunxuan, et al. Altimetry Gravity and Its Applications in South China Sea[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(3):368-371.
[3] 梁子亮,陈路,解琨,等. 利用多代卫星测高数据反演海洋重力异常及大地水准面[J]. 大地测量与地球动力学, 2015, 35(1):40-44. Liang Ziliang, Chen Lu, Xie Kun, et al. Inversion of Marine Gravity Anomalies and Geiod Using Muiti-Satellite Altimeter Data[J]. Journal of Geodesy and Geodynnamics, 2015, 35(1):40-44.
[4] 聂琳娟,吴云孙,金涛勇,等. 联合测高重力异常与ETOPO5海深数据求解南海海深模型[J]. 湖北民族学院学报(自然科学版), 2011, 29(2):157-160. Nie Linjuan, Wu Yunsun, Jin Taoyong, et al. Solution of the Ocean Depth Model for the South China Sea by Combining Gravity Altimetry and ETOPO5 Deep-Sea Data[J]. Journal of Hubei University for Nationalities (Natural Science Edition), 2011, 29(2):157-160.
[5] Calmant S, Baudry N. Modelling Bathymetry by Inverting Satellite Altimetry Data:A Review[J]. Marine Geophysical Research, 1996, 18(2):123-134.
[6] Hwang C. A Bathymetric Model for the South China Sea from Satellite Altimetry and Depth Data[J]. Marine Geodesy, 1999, 22(1):37-51.
[7] Kim K B, Hsiao Y S, Kim J W, et al. Bathymetry Enhancement by Altimetry-Derived Gravity Anomalies in the East Sea (Sea of Japan)[J]. Marine Geophysical Researches, 2010, 31(4):285-298.
[8] Kim J W, Frese R R B V, Bang Y L, et al. Altimetry-Derived Gravity Predictions of Bathymetry by the Gravity-Geologic Method[J]. Pure and Applied Geophysics, 2011, 168(5):815-826.
[9] Hsiao Y S, Kim J W, Kim K B, et al. Bathymetry Estimation Using the Gravity-Geologic Method:An Investigation of Density Contrast Predicted by the Downward Continuation Method[J]. Terrestrial Atmospheric & Oceanic Sciences, 2011, 22(3):347-358.
[10] Sandwell D T, Müller R D, Smith W H, et al. New Global Marine Gravity Model from Cryosat-2 and Jason-1 Reveals Buried Tectonic Structure[J]. Science, 2014, 346(6205):65.
[11] Parker R L. The Rapid Calculation of Potential Ano-malies[J]. Geophysical Journal International, 1973, 31(4):447-455.
[12] Watts A B. An Analysis of Isostasy in the World's Oceans:1. Hawaiian-Emperor Seamount Chain[J]. Journal of Geophysical Research Solid Earth, 1978, 83(B12):5989-6004.
[13] Smith W H F, Sandwell D T. Bathymetric Prediction from Dense Satellite Altimetry and Sparse Shipboard Bathymetry[J]. Journal of Geophysical Research Solid Earth, 1994, 99(B11):21803-21824.
[14] Braitenberg C, Pagot E, Wang Y, et al. Bathymetry and Crustal Thickness Variations from Gravity Inversion and Flexural Isostasy[M]. Berlin:Springer, 2003:143-149.
[15] 胡敏章,李建成,金涛勇. 应用重力地质方法反演皇帝海山的海底地形[J]. 武汉大学学报:信息科学版, 2012, 37(5):610-612, 629. Hu Minzhang, Li Jiancheng, Jin Taoyong. Bathymetry Inversion with Gravity-Geologic Method in Emperor Seamount[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):610-612, 629.
[16] 黄谟涛,翟国君,欧阳永忠,等. 卫星测高资料在反演海底地形中的应用[J]. 海洋测绘, 2002, 22(1):3-7. Huang Motao, Zhai Guojun, Ouyang Yongzhong, et al. On the Application of Altimeter Data to the Recovery of Bathymetry[J]. Hydrographic Surveying and Charting, 2002, 22(1):3-7.
[17] 欧阳明达,孙中苗,翟振和. 基于重力地质法的南中国海海底地形反演[J]. 地球物理学报, 2014, 57(9):2756-2765. Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe. Predicting Bathymetry in South China Sea Using the Gravity-Geologic Method[J]. Chinese Journal of Geophysics, 2014, 57(9):2756-2765.
[18] Hsiao Y S, Hwang C, Cheng Y S, et al. High-Resolution Depth and Coastline over Major Atolls of South China Sea from Satellite Altimetry and Imagery[J]. Remote Sensing of Environment, 2016, 176:69-83.
[19] 徐世浙. 迭代法与FFT法位场向下延拓效果的比较[J]. 地球物理学报, 2007, 50(1):285-289. Xu Shizhe. A Comparison of Effects Between the Iteration Method and FFT for Downward Continuation of Potential Fields[J]. Chinese Journal of Geophysics, 2007, 50(1):285-289.
[20] Schwarz K P, Sideris M G, Forsberg R. The Use of FFT Techniques in Physical Geodesy[J]. Geophysical Journal International, 1990, 100(3):485-514.
[21] 周波阳,罗志才,许闯,等. 航空重力数据向下延拓的FFT快速算法比较[J]. 大地测量与地球动力学, 2013, 33(1):64-68. Zhou Boyang, Luo Zhicai, Xu Chuang, et al. Comparison Among Fast Fourier Transform Algorithms for Downward Continuation of Airborne Gravity Data[J]. Journal of Geodesy and Geodynamics, 2013, 33(1):64-68.
[22] Fryer P, Becker N, Appelgate B, et al. Why is the Challenger Deep so Deep[J]. Earth & Planetary Science Letters, 2003, 211(3-4):259-269.
[23] Fujioka K, Okino K, Kanamatsu T, et al. Morp-hology and Origin of the Challenger Deep in the Southern Mariana Trench[J]. Geophysical Research Letters, 2002, 29(10):10-11.
[24] Amante C, Eakins B W. Etopo11 Arc-Minute Global Relief Model:Procedures, Data Sources and Analysis[J]. Psychologist, 2009, 16(3):20-25.
[25] Center N G D. Etopo2V22 Minute Worldwide Bathy-metry/Topography Grids|Ngdc.Noaa.Gov[EB/OL].[2017-04-15]. https://www.ngdc.noaa.gov/mgg/global/etopo2.html.
[26] Center N G D. Etopo5 Data and Documentation|Ngdc.Noaa.Gov.[EB/OL].[2017-04-15]. https://www.ngdc.noaa.gov/mgg/global/etopo5.html.
[27] Andersen O B, Jain M, Knudsen P. The Impact of Using Jason-1 and Cryosat-2 Geodetic Mission Altimetry for Gravity Field Modeling[M]. Cham:Springer International Publishing, 2016:205-210.
[1] Zhang Chong, Huang Danian, Qin Pengbo, Wu Guochao, Fang Gang. Third-Order Adams-Bashforth Formula Method for Downward Continuation of Gravity Field [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1533-1542.
[2] Yu Dewu, Gong Shengping. Analysis of the Potential Field Downward Continuation Iteration Method [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 934-940.
[3] Zhang Zhi-hou,Wu Le-uan. Correlation Coefficient Method for Downward Continuation of Potential Fields [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1912-1919.
[4] ZHANG Li-Li, LIU Si-xin, WU Jun-jun, ZHANG Zhi-xian. Layered Media Q Estimation for GPR Signal Processing and the Algorithm of Inverse Q Filtering [J]. J4, 2011, 41(1): 265-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!