Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (5): 1416-1426.doi: 10.13278/j.cnki.jjuese.20170116

Previous Articles     Next Articles

Fast Shear Mechanical Properties of Saturated Sand Under Different Drainage Conditions

Hong Yong1, Zhou Rong1, Zheng Xiaoyu2   

  1. 1. Civil Engineering College, Qingdao University of Technology, Qingdao 266033, Shandong, China;
    2. College of Construction Engineering, Jilin University, Changchun 130026, China
  • Received:2018-01-18 Published:2018-11-20
  • Supported by:
    Supported by National Natural Science Foundation of China(41272341,41572259), Science and Technology Project in Colleges and Universities of Shandong Province(J12LG08)and Opening Fund of Key Laboratory of Chengdu University of Technology(SKLGP2012K013)

Abstract: In order to explore the mechanical properties and mechanisms of saturated sands under different normal stresses, shearing rates and pore water pressures, a continuous large displacement shear test was conducted by using a large ring-shear test apparatus. The research results demonstrated that:1) Given continuous fast shearing, the shearing mechanical properties of sands changed differently under dry, non-drainage and drainage conditions. The saturated sands presented certain strain softening under the non-drainage condition. 2) In the ring-shear test with the same positive stress and shearing rate, the shear strengths of the saturated sands differed significantly under the different drainage conditions (upper drainage, down drainage and up-down drainage). 3) Under the drainage conditions in the ring-shear test, the difference between shearing stress and strength of sands was not only related with the fine particle movement and structural changes, but also influenced and controlled by the variations of the pore water pressure in the shearing process. 4) Given drainage ring-shearing, the dissipation of pore water pressure of saturated sands was related with the smoothness of the drainage channels formed in the soil under the different drainage modes, and influenced by different shearing rates and normal stress.

Key words: ring shear test, shear strength, normal stress, shear rate, pore water pressure

CLC Number: 

  • P642.13
[1] 徐张建,林在贯,张茂省. 中国黄土与黄土滑坡[J].岩石力学与工程学报, 2007, 26(7):1297-1312. Xu Zhangjian, Lin Zaiguan, Zhang Maosheng. Loess China and Loess Landslides[J]. Journal of Rock Mechanics and Engineering, 2007, 26(7):1297-1312.
[2] 彭令,徐素宁,彭军还. 多源遥感数据支持下区域滑坡灾害风险评价[J].吉林大学学报(地球科学版), 2016, 46(1):175-186. Peng Ling, Xu Suning, Peng Junhuan. Regional Landslides Risk Assessment Using Multi-Source Remote Sensing Data[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1):175-186.
[3] Hong Yong, Yu Guangming, Wu Yingxia, et al. Effect of Cyclic Loading on the Residual Strength of Over-Consolidated Silty Clay in a Ring Shear Test[J]. Journal of International Consortium on Landslides, 2011, 8(2):233-240.
[4] 龙建辉,李同录,雷晓峰. 黄土滑坡滑带土的物理特性试验研究[J].岩土工程学报,2007, 29(2):289-293. Long Jianhui, Li Tonglu, Lei Xiaofeng. Study on Physical Properties of Soil in Sliding Zone of Loess Landslide[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2):289-293.
[5] 田斌,戴会超,王世梅. 滑带土结构强度特征及其强度参数取值研究[J].岩石力学与工程学报, 2004,23(17):2887-2892. Tian Bin, Dai Huichao, Wang Shimei. Study on Strength Chracteristics of Soil in Slide Zone and Determination of Its Parameters[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(17):2887-2892.
[6] 卢坤林,朱大勇,许强, 等. 滑带土抗剪强度参数的三维反分析[J].岩土力学, 2010,31(10):3319-3328. Lu Kunlin, Zhu Dayong, Xu Qiang, et al. Three-Dimensional Inverse Analysis of Shear Strength Parameter of Sliding Zone Soil[J]. Rock and Soil Mechanics, 2010, 31(10):3319-3328.
[7] 王洪兴,唐辉明,陈聪. 滑带土黏土矿物定向性的X射线衍射及其对滑坡的作用[J].水文地质工程地质, 2004(增刊):79-81. Wang Hongxing, Tang Huiming, Chen Cong. Study On X-Ray Diffraction for the Orientability of Clay Minerals in Sliding Soil[J]. Hydrogeology & Engineering Geology, 2004(Sup.):79-81.
[8] 郑明新. 论滑带土强度特征及强度参数的反分析[J].岩土力学, 2003, 24(4):528-532. Zheng Mingxin. Research of Strength Characteristic of Landslide Slip and Revised Counter Calculation Method[J]. Rock and Soil Mechanics,2003,24(4):528-532.
[9] 张昆,郭菊彬. 滑带土残余强度参数试验研究[J].铁道工程学报, 2007(8):13-15,26. Zhang Kun, Guo Jubin. Experimental Research on the Residual Strength Parameters of Slip Soils[J]. Journal of Railway Engineering, 2007(8):13-15,26.
[10] 程圣国,方坤河,罗先启,等. 三峡库区新生型滑坡滑带土抗剪强度确定概率方法[J].岩石力学与工程学报, 2007, 26(4):840-844. Cheng Shengguo, Fang Kunhe, Luo Xianqi, et al. Probability Method to Determine Shear Strength of Slide Zone Clay for Neogenic Landslide in Three Gorges Reservoir Area[J]. China Journal of Rock Mechanics and Engineering, 2007, 26(4):840-844.
[11] 罗冲,殷坤龙,陈丽霞. 万州区滑坡滑带土抗剪强度参数概率分布拟合及其优化[J].岩石力学与工程学报, 2005, 24(9):1588-1593. Luo Chong, Yin Kunlong, Chen Lixia. Probability Distribution Fitting and Optimization of Shear Strength Parameters in Sliding Zone Along Horizontal-Stratum Landslides in Wanzhou City[J]. China Journal of Rock Mechanics and Engineering, 2005, 24(9):1588-1593.
[12] 洪勇,岳玉秋,郑孝玉,等. 大连滨海粉质黏土剪切力学特性环剪试验[J].吉林大学学报(地球科学版),2016, 46(5):1475-1481. Hong Yong, Yue Yuqiu, Zheng Xiaoyu, et al. Shear Strength of Silty Clay in Dalian by Ring Shear Tests[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1475-1481.
[13] Suzuki M, Umezaki T, Kawakami H. Residual Strength of Soil by Direct Shear Test[J]. Journal of Geotechnical Engineering, 2000,50:37-50.
[14] 洪勇,孙涛,栾茂田,等. 土工环剪仪的开发及应用研究现状[J]. 岩土力学,2009,30(3):628-634. Hong Yong, Sun Tao, Luan Maotian, et al. Development and Application of Geotechnical Ring Shear Apparatus:An Overview[J]. Rock and Soil Mechanic, 2009, 30(3):628-634.
[15] 许领,戴福初. 泾阳南塬黄土滑坡特征参数统计分析[J].水文地质工程地质,2008,35(5):28-32. Xu Ling, Dai Fuchu. Statistical Analysis of the Characteristic Parameters of Loess Landslides at the South Jingyang Plateau[J]. Hydrogeology & Engineering Geology, 2008, 35(5):28-32.
[16] 段钊,彭建兵,王启耀. 泾阳南塬黄土滑坡的运动规律与液化效应[J]. 水土保持通报,2016,36(3):46-49. Duan Zhao, Peng Jianbing, Wang Qiyao. Motion Law and Liquefaction Effect of Loess Landslides in South Jingyang Plateau[J]. Bulletin of Soil and Water Conservation, 2016, 36(3):46-49.
[17] 岳玉秋. 异质土体间大剪切力学特性环剪试验研究[D].青岛:青岛理工大学,2015. Yue Yuqiu. Ring Shear Study on Large Shear Mechanic Properties Between Heterogeneous Soils[D]. Qingdao:Qingdao Techlogogy of University, 2015.
[18] 卢廷浩,刘祖德. 高等土力学[M]. 北京:机械工业出版社,2005. Lu Tinghao, Liu Zude. Advanced Soil Mechanics[M]. Beijing:Machinery Industry Press, 2005.
[19] 松冈元.土力学[M].罗汀,姚仰平,译. 北京:中国水利水电出版社, 2001. Song Gangyuan. Soil Mechanics[M]. Translated by Luo Ting, Yao Yangping. Beijing:China Water Power Press, 2001.
[20] 李广信. 高等土力学[M].北京:清华大学出版社, 2004. Li Guangxin. Advanced Soil Mechanics[M]. Beijing:Tsinghua University Press,2004.
[21] Terzaghi K, Peck P B, Mesri G. Soil Mechanics[M]. New York:John Wiley&Sons,1996:121-135.
[22] Agung W M, Sassa K, Fukuoka H, et al. Evolution of Shear-Zone Structure in Undrained Ring Shear Tests[J]. Landslides, 2004, 1(1):101-112.
[23] Wang G H, Sassa K. Post-Failure Mobility of Saturated Sands in Undrained Load-Controlled Ring Shear Tests[J]. Canadian Geotechnical Journal, 2002, 39(4):821-837.
[24] Okada Y, Sassa K, Fukuoka H. Excess Pore Pressure and Grain Crushing of Sands by Means of Undrained and Naturally Drained Ring-Shear Tests[J]. Engineering Geology, 2004, 75(4):325-343.
[1] Gou Fugang, Gong Xulong, Wang Guangya. Shear Strength and Failure Characteristics of Marine Soft Soil in Lianyungang [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1165-1173.
[2] Hong Yong, Che Xiaowen, Zheng Xiaoyu, Liu Peng, Zhou Rong. Fast Shear Behavior of Saturated and Dry Loess at South Plateau Landslide of Jingyang, Shaanxi [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1207-1218.
[3] Hong Yong, Yue Yuqiu, Zheng Xiaoyu, Che Xiaowen, Liu Peng. Shear Strength of Silty Clay in Dalian by Ring Shear Tests [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1475-1481.
[4] Zhang Hu, Zhang Jianming, Su Kai, Liu Shiwei. Comparison Between Pressuremeter Test and Uniaxial Compression Test of Frozen Soil [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1479-1484.
[5] Zhao Quanli, Shang Yuequan, Zhi Momo. Modification of the Start-Up Criterion of Translational Gliding Landslide [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 596-602.
[6] SHEN Yu-peng, FENG Rui-ling, YU Jiang, LIU Hui. Reinforcement of Vacuum Preloading with Air Pressure Boosted for Soft Ground Treatment [J]. J4, 2012, 42(3): 792-797.
[7] YAN Chun-ling, TANG Yi-qun, WANG Yuan-dong, LI Ren-jie. Fuzzy Orthogonal Analysis on Pore Water Pressure of Reinforced Soft Clay Under Cyclic Loads [J]. J4, 2011, 41(3): 805-811.
[8] ZHANG Yan-jun. The Study of the Analysis Method of Seepage Coupled Deformation in Slope and Its Application [J]. J4, 2006, 36(01): 103-0107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!