Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (1): 105-117.doi: 10.13278/j.cnki.jjuese.20170125

Previous Articles     Next Articles

Genesis and Material Source of Scheelite of Yangbishan Iron-Tungsten Deposit in Heilongjiang, NE China

Ma Yupeng1, Ren Yunsheng1,2, HaoYujie1,2, Lai Ke1, Zhao Hualei3, Liu Jun4   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and Resources of China, Changchun 130061, China;
    3. Tianjin Center, China Geological Survey, Tianjin 300170, China;
    4. Heilongjiang Jianlong Iron and Steel Co., Ltd, Shuangyashan 155126, Heilongjiang, China
  • Received:2017-05-28 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Key Research and Development Program of China (2017YFC0601304), National Basic Research Program ("973"Program) of China (2013CB429802) and National Natural Science Foundation of China (41272094)

Abstract: The Yangbishan iron-tungsten deposit is located in Shuangyashan area of Heilongjiang Province, tectonically in the central of Jiamusi massif, the eastern Central Asian Orogenic Belt. The major ore-hosting strata in this area are the metamorphic rock series of Dapandao Formation in Xingdong Group. The layered iron orebodies are mainly hosted in the lowest rock section of Dapandao Formation. The lenticular and vein scheelite orebodies occur in the footwall of iron orebodies, and are controlled by the contact zone between the gneiss granite and the marble of Dapandao Formation. The ore-bearing rocks of tungsten mineralization in the Yangbishan deposit include garnet skarn and diopside skarn. The metallic minerals in the tungsten ore are mainly of scheelite and pyrrhotite, with a small amount of magnetite, pyrite, chalcopyrite, sphalerite, cassiterite, arsenopyrite and molybdenite. The δ18Oquartz value of scheelite-quartz veins in the Yangbishan deposit is 10.9 ‰-14.8 ‰, the δ18Owater value is 3.6 ‰-7.5 ‰, and the δD value is -120.9 ‰—-66.2 ‰, which show that the ore forming fluid of the scheelite mineralization is dominated by magmatic water. The δ34S value of metal sulfides in the skarn changes from 16.1 ‰ to 18.1 ‰, 206Pb/204Pb value from 17.879 to 18.863, 207Pb/204Pb value from 15.537 to 15.603, and 208Pb/204Pb value from 38.202 to 38.544. The data presented in this paper indicate that S and Pb in the metal sulfides mainly came from the ore-hosting strata and re-melted granitic magma. The geological characteristics of the tungsten mineralization in the Yangbishan deposit are similar to those of the skarn-type tungsten deposits. It can be concluded that the scheelite mineralization in the Yangbishan iron-tungsten deposit belongs to skarn-type deposits.

Key words: S-Pb isotope, fluid sources, genesis of the tungsten mineralization, Yangbishan iron-tungsten deposit, Jiamusi massif

CLC Number: 

  • P618.67
[1] 任云生,牛军平,雷恩,等. 吉林四平三家子钨矿床地质与地球化学特征及成因[J]. 吉林大学学报(地球科学版),2010,40(2):314-320. Ren Yunsheng, Niu Junping, Lei En,et al. Geological & Geochemical Characteristics and Metallogenesis of Sanjiazi Scheelite Deposit in Siping Area, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(2): 314-320.
[2] 郝宇杰,任云生,赵华雷,等. 黑龙江省翠宏山钨钼多金属矿床辉钼矿Re-Os同位素定年及其地质意义[J]. 吉林大学学报(地球科学版),2013,43(6):1840-1850. Hao Yujie, Ren Yunsheng, Zhao Hualei, et al. Re-Os Isotopic Dating of the Molybdenite from the Cuihongshan W-Mo Polymetallic Deposit in Heihongjiang Province and Its Geological Signifiance[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(6): 1840-1850.
[3] 刘玉. 黑龙江省弓棚子铜锌钨矿床地质特征及找矿方向[D]. 长春:吉林大学, 2013. Liu Yu. The Geological Characteristics and Prospecting Direction of Gongpengzi Cu-Zn-W Deposit in Heilongjiang Province[D]. Changchun: Jilin University, 2013.
[4] 赵华雷,任云生,鞠楠,等. 延边白石砬子钨矿床成矿岩体的年代学与地球化学特征[J]. 吉林大学学报(地球科学版),2011, 41(6):1726-1735. Zhao Hualei, Ren Yunsheng, Ju Nan, et al. Geochronology and Geochemistry of Metallogenic Intrusion in Baishilazi Tungsten Deposit of Eastern Yanbian Area, Northeast China[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(6): 1726-1735.
[5] 任云生,赵华雷,雷恩,等. 延边杨金沟大型钨矿床白钨矿的微量和稀土元素地球化学特征及矿床成因[J]. 岩石学报,2010,26(12):3720-3726. Ren Yunsheng, Zhao Hualei, Lei En, et al. Trace Element and Rare Earth Element Geochemistry of the Scheelite and Ore Genesis of the Yangjingou Large Scheelite Deposit in Yanbian Area, Northeastern China[J]. Acta Petrologica Sinica, 2010, 26(12): 3720-3726.
[6] 任云生,鞠楠,赵华雷,等. 延边东部五道沟脉型白钨矿矿床地质特征及流体包裹体[J]. 吉林大学学报(地球科学版),2011,41(6):1736-1744. Ren Yunsheng, Ju Nan, Zhao Hualei, et al. Geological Characteristics and Fluid Inclusions of Wudaogou Lode Scheelite Deposit in Eastern Yanbian, Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(6): 1736-1744.
[7] Guo Z J, Li J W, Xu X Y, et al. Sm-Nd Dating and REE Composition of Scheelite for the Honghuaerji Scheelite Deposit, Inner Mongolia, Northeast China[J]. Lithos, 2016, 261: 307-321.
[8] 赵华雷. 吉黑东部钨矿成因及成矿地球动力学背景[D]. 长春:吉林大学, 2014. Zhao Hualei. Ore Genesis and Geodynamic Settings of Tungsten Deposits in Eastern Jilin and Heilongjiang[D]. Changchun: Jilin University, 2014.
[9] 谭成印. 黑龙江省主要金属矿产构造-成矿系统基本特征[D]. 北京:中国地质大学, 2009. Tan Chengyin. The Basic Features of Structure-Metallogenic System of the Main Metal Mineral in Heilongjiang Province[D]. Beijing: China University of Geosciences, 2009.
[10] 魏连喜. 黑龙江省有色、贵金属成矿规律及定量预测研究[D]. 长春:吉林大学, 2013. Wei Lianxi. Study on Metallogenic Regularity and Quantitative Prediction of Nonferrous Metals and Precious Metals in Heilongjiang Province[D]. Changchun: Jilin University, 2013.
[11] 葛文春,吴福元,周长勇,等. 兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J]. 科学通报,2007,52(20):2407-2417. Ge Wenchun, Wu Fuyuan, Zhou Changyong, et al. Metallogenic Epoch and its Geodynamic Significances of the Porphyry-Type Cu, Mo Deposit in Xing'an-Mongolian Orogenic Belt[J]. Chinese Science Bulletin, 2007, 52(20): 2407-2417.
[12] Wilde S A, Zhang X Z, Wu F Y. Extension of a Newly Identified 500 Ma Metamorphic Terrane in North East China: Further U-Pb SHRIMP Dating of the Mashan Complex, Heilongjiang Province, China[J]. Tectonophysics, 2000, 328: 115-130.
[13] 曹熹,党增欣,张兴洲,等. 佳木斯复合地体[M]. 长春:吉林科学技术出版社,1992:1-170. Cao Xi, Dang Zengxin, Zhang Xingzhou, et al. Jiamusi Composite Terrane[M]. Changchun: Jilin Science and Technology Press, 1992: 1-170.
[14] 姜继圣. 麻山群孔兹岩系主期区域变质作用及演化[J]. 岩石矿物学杂志,1992, 11(2):97-108. Jiang Jisheng. Regional Metamorphism and Evolution of Mashan Khondalite Series[J]. Acta Petrologica et Mineralogica,1992, 11(2): 97-108.
[15] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京:地质出版社,1993:8-30. Bureau of Geology and Mineral Resources of Heilongjiang Province. Regional Geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 1993: 8-30.
[16] 卢良兆,徐学纯,刘福来. 中国北方早前寒武纪孔兹岩系[M]. 长春:长春出版社,1996:26-194. Lu Liangzhao, Xu Xuechun, Liu Fulai. Early Precambrian Khondalite Series of Northern China[M]. Changchun: Changchun Press, 1996: 26-194.
[17] 张兴洲. 黑龙江岩系:古佳木斯地块加里东缝合带的证据[J]. 长春地质学院学报,1992, 22(增刊):94-101. Zhang Xingzhou. The Evidence of the Caledonian Suture Zone of Heilongjiang Rock Series-Ancient Jiamusi Massif[J]. Journal of Changchun College of Geology, 1992, 22(Sup.): 94-101.
[18] 赵亮亮,王宗起,张兴洲. 黑龙江省东部马家街群碎屑锆石年代学及其大地构造意义[J]. 岩石学报,2014, 30(6):1769-1779. Zhao Liangliang, Wang Zongqi, Zhang Xingzhou. Detrital Zircon U-Pb Dating of Majiajie Group and Its Tectonic Implications[J]. Acta Petrologica Sinica, 2014, 30(6): 1769-1779.
[19] 孙景贵,邢树文,郑庆道. 中国东部陆缘有色、贵金属矿床的地质特征、地球化学[M].长春:吉林大学出版社,2006. Sun Jinggui, Xing Shuwen, Zheng Qingdao. Geological Characteristics and Geochemical of Nonferrous and Precious Metal Deposits in Continental Margin, Eastern China[M]. Changchun: Jilin University Press, 2006.
[20] Wilde S A,吴福元,张兴洲. 中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J]. 地球化学,2001,30(1):35-50. Wilde S A, Wu Fuyuan, Zhang Xingzhou. The MaShan Complex: SHRIMP U-Pb Zircon Evidence for a Late Pan-African Metamorphic Event in NE China and Its Implication for Global Continental Reconstructions[J]. Geochemistry, 2001, 30(1): 35-50.
[21] Wilde S A, Wu F Y, Zhang X Z. Late Pan-African Magmatism in Northeastern China: SHRIMP U-Pb Zircon Evidence from Granitoids in the Jiamusi Massif[J]. Precambrian Research, 2003, 122: 311-327.
[22] 颉颃强,苗来成,陈福坤,等. 黑龙江东南部穆棱地区"麻山群"的特征及花岗岩锆石SHRIMP U-Pb定年:对佳木斯地块最南缘地壳演化的制约[J]. 地质通报,2008,27(12):2127-2137. Xie Hangqiang, Miao Laicheng, Chen Fukun, et al. Characteristics of the "Mashan Group" and Zircon SHRIMP U-Pb Dating of Granite in Muling Area, Southeastern Heilongjiang Province, China: Constraint on Crustal Evolution of the Southernmost of Jiamusi Massif[J]. Geological Bulletin of China, 2008, 27(12): 2127-2137.
[23] 黄映聪,张兴洲,张宏宾,等. 黑龙江东部马家街群的岩石地球化学特征及其沉积时代[J]. 地质学报,2009,83(2):295-303. Huang Yingcong, Zhang Xingzhou, Zhang Hongbin, et al. Geochemical Characteristics and Sedimentation Age of the Majiajie Group in Eastern Heilongjiang Province, China[J]. Acta Geologica Sinica, 2009, 83(2): 295-303.
[24] 李怡欣. 黑龙江省老柞山金矿床的成因与成矿地质模式[D]. 长春:吉林大学,2012. Li Yixin. The Study on Ore Genesis and Metallogenic Geological Model of Laozuoshan Gold Deposit in Heilongjiang Province[D]. Changchun: Jilin University, 2012.
[25] 赖科,任云生,郝宇杰,等. 黑龙江佳木斯地区羊鼻山BIF型铁矿床的形成时代及地质意义[J]. 世界地质,2017,36(2):495-506. Lai Ke, Ren Yunsheng, Hao Yujie, et al. Formation Age and Geological Significance of Yangbishan BIF Type Iron Deposit in Jiamusi Area, Heilongjiang[J]. Global Geology, 2017, 36(2): 495-506.
[26] 刘忠法,邵拥军,周鑫,等. 安徽铜陵冬瓜山铜( 金)矿床H-O-S-Pb同位素组成及其示踪成矿物质来源[J]. 岩石学报,2014,30(1):199-208. Liu Zhongfa, Shao Yongjun, Zhou Xin, et al. Hydrogen, Oxygen, Sulfur and Lead Isotope Composition Tracing for the Ore Forming Material Source of Dongguashan Copper (Gold) Deposit in Tongling, Anhui Province[J]. Acta Petrologica Sinica, 2014, 30(1): 199-208.
[27] Clayton R N, O'Neil J R, Mayeda T K. Oxygen Isotope Exchange Between Quartz and Water[J]. Journal of Geophysical Research, 1972, 77(17): 3057-3067.
[28] Hao Y J, Ren Y S, Zhao H L, et al. Metallogenic Mechanism and Tectonic Setting of Tungsten Mineralization in the Yangbishan Iron-Tungsten Deposit, Heilongjing Province, NE China[J]. Acta Geologica Sinica (English Edition), 2017, in press.
[29] Hoefs J. Stable Isotope Geochemistry[M]. 4th Ed. Berlin: Springer Verlag, 1997: 1-201.
[30] 郑永飞,陈江峰. 稳定同位素地球化学[M]. 北京:科学出版社,2000: 193-217. Zheng Yongfei, Chen Jiangfeng. Stable Isotope Geochemistry[M]. Beijing: Science Press, 2000:193-217.
[31] Pirajno F. Hydrothermal Processes and Mineral System[M]. Berlin: Springer, 2009: 1-1250.
[32] 谭泽模,唐龙飞,黄敦杰,等. 广西大厂矿田C、H、O同位素及成矿流体来源研究[J]. 矿产勘查,2014,5(5):738-743. Tan Zemo, Tang Longfei, Huang Dunjie, et al. Study on Isotopes of Carbon, Hydrogen and Oxygen and Sources of Ore-Forming Fluids in the Dachang Tin Frefield, Guangxi[J]. Mineral Exploration, 2014, 5(5): 738-743.
[33] Canbaz O, Gökce A. Microthermometric and Stable Isotopic (O and H) Characteristics of Fluid Inclusions in the Porphyry Related Çöpler (Iliç-Erzincan) Gold Deposit, Central Eastern Turky[J]. Central European Jounral of Geosciences, 2014, 6(2): 139-147.
[34] Ohmoto H, Rye R O. Isotopes of Sulfur and Carbon[C]//Barbes H L. Geochemistry of Hydrothermal Ore Deposits. New York: Wiley, 1979: 509-567.
[35] Taylor H P, Jr H P. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition[J]. Economic Geology, 1974, 69(6): 843-883.
[36] Barnes H L. Solubilities of Ore Minerals[J]. Geo-chemistry of Hydrothermal Ore Deposits, 1979, 2: 404-460.
[37] Rye R O. The Evolution of Magmatic Fluids in the Epithermal Environment: The Stable-Isotope Perspective[J]. Economic Geology, 1993, 88: 733-753.
[38] Harris A C, Allen C M, Holcombe R J, et al. ELA-ICP-MS U-Pb Zircon Geochronology of Regional Volcanism Hosting the Bajo de la Alumbrera Cu-Au Deposit: Implications for Porphyry-Related Mineralization[J]. Mineralium Deposita, 2004, 39: 46-67.
[39] Goldfarb R J, Leach D L, Rose S C, et al. Fluid Inclusion Geochemistry of Gold-Bearing Quartz Veins of the Juneau Gold Belt, Southeastern Alaska: Implications for Ore Genesis[J]. Economic Geology Monograph, 1989, 6: 363-375.
[40] Mc Cuaig C T, Kerrich R. P-T-t-Deformation-Fluid Characteristics of Lode Gold Deposits: Evidence from Alteration Systematics[J]. Ore Geology Reviews, 1998, 12: 381-453.
[41] Claypool G E, Hoslter W T, Kaplan I R, et al. The Age Curves of Sulfur and Oxygen Isotopes in Marine Sulfate and Their Mutual Interpretation[J]. Chemical Geology, 1980, 28: 199-260.
[42] Strauss H. The Sulfur Isotopic Record of Precam-brian Sulfates: New Data and a Critical Evaluation of the Existing Record[J]. Precambrian Research, 1993, 63: 225-246.
[43] 祝新友,王京彬,王艳丽,等. 湖南黄沙坪W-Mo-Bi-Pb-Zn多金属矿床硫铅同位素地球化学研究[J]. 岩石学报,2012,28(12):3809-3822. Zhu Xinyou, Wang Jingbin, Wang Yanli, et al. Sulfur and Lead Isotope Constraints on Ore Formation of the Huangshaping W-Mo-Bi-Pb-Zn Polymetallic Ore Deposit, Hunan Province, South China[J]. Acta Petrologica Sinica, 2012, 28(12): 3809-3822.
[44] Zartman R E, Doe B R. Plumbotectonics:The Model[J]. Tectonophysics, 1981, 75: 135- 162.
[45] 朱炳泉,邹日,常向阳,等. 金平龙脖河铜矿区变钠质火山岩系地球化学研究:I: 主微量元素特征和形成环境探讨[J]. 地球化学,1998,27(4):351-360. Zhu Bingquan, Zou Ri, Chang Xiangyang, et al. Geochemical Studies on Sodium Enriched Volcanic Rocks in the Area of Longbohe Copper Deposit, Yunnan Province, SW China: I: Characteristics of Major and Trace Element and Implication for Genetic Environment[J]. Geochemical, 1999, 27(4): 351-360.
[46] 毕承思. 中国矽卡岩型白钨矿矿床成矿基本地质特征[J]. 中国地质科学院院报,1987(17):49-64. Bi Chengsi. Basic Geological Characteristics of Skarn-Type Scheelite Deposit in China[J]. Bulletin of the Chinese Academy of Geological Sciences, 1987(17): 49-64.
[1] Chen Ruili, Chen Zhengle, Wu Junjie, Liang Zhilu, Han Fengbin, Wang Yong, Xiao Changhao, Wei Liangxi, Shen Tao. Fluid Inclusions and S-Pb Isotopes in Zaozigou Gold Deposit, Hezuo in Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 87-104.
[2] Qiao Jian, Luan Jinpeng, Xu Wenliang, Wang Zhiwei, Zhao Shuo, Guo Peng. Age and Provenance of Early Paleozoic Sedimentary Formation in Northern Jiamusi Massif: Evidence from U-Pb Ages and Hf Isotope Compositions of Detrital and Magmatic Zircons [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 118-131.
[3] GAO Fu-hong, WANG Feng, CAO Hua-hua, ZHENG Yu-hang, LIU Jun. Zircon U-Pb Age of the Basement Granite from Suibin Depression in Sanjiang Basin and Its Tectonic Implications [J]. J4, 2010, 40(4): 955-960.
[4] WEN Quan-bo, LIU Yong-jiang, LI Wei-min, HAN Guo-qing, DING Ling. Monazite Ages and Its Geological Significance of Granitoid Gneiss in the Jiamusi Massif [J]. J4, 2008, 38(2): 187-0193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!