Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (5): 1378-1393.doi: 10.13278/j.cnki.jjuese.20170163

Previous Articles     Next Articles

Chemical Components and Boron Isotopic Composition of Tourmaline of Uranium Bearing Porphyroclastic Lava in Xiangshan, Jiangxi

Dai Jiaqi1, Li Guangrong1,2, Guo Fusheng1, Wang Chao1, Wang Zhe1, Zhang Wanliang3, Yu Yushuai4   

  1. 1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory/School of Earth Sciences, East China University of Technology, Nanchang 330013, China;
    2. State Key Laboratory for Mineral Deposits Research/School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China;
    3. Research Institute No. 270, CNNC, Nanchang 330200, China;
    4. Wuhan Center of China Geological Survey, Wuhan 430205, China
  • Received:2017-12-06 Published:2018-11-20
  • Supported by:
    Supported by the National Natural Science Foundation of China (41402028,41572185) and Project of China Geological Survey (DD20160134,121201009000150007)

Abstract: The Xiangshan uranium ore-field is the largest volcanic uranium ore-field in China, its ore-hosting rock is mainly of rhyodacite and porphyroclastic lava with a small amount of the Precambrian metamorphic rocks and Mesozoic granite porphyry. The porphyroclastic lava sub-facies yielde spherical tourmaline nodules with diameters of 10-20 cm, in which the main mineral assemblage is of tourmaline, quartz and minor feldspar, mixed with a small amount of uraninite. Tourmaline alterated early formed feldspar. A detailed mineralogical study for the tourmaline in porphyroclastic lava of the Ruyiting area in Xiangshan was performed by means of the microscope, electron probe, laser ablation multi-collector inductively coupled plasma mass spectrometry. The electron microprobe analysis shows that the tourmaline in porphyroclastic lava is the typical schorl characterized by the enrichment of Na, Fe. The volatile components are high in the tourmaline, of which the content of B2O3 is 9.38%-10.04%, and F is 0.10%-1.77%. The high volatile components such as B and F in ore-forming fluid with high oxygen fugacity in early stage of magma evolution made the U element more actively to form complex, which is more conducive to U migration and enrichment. The analysis of boron isotope in tourmaline from two porphyroclastic lava samples was performed by means of in-situ microanalysis of boron isotopes (LA-MC-ICP-MS). The results show that the content of δ11 B in tourmaline is (-13.15±0.72) ‰-(-12.28±0.63) ‰ with the mean value of (-12.72±0.94) ‰; which indicates that the Xiangshan volcano intrusive complex mainly comes from the partial melting of the Xiangshan crustal basement rocks.

Key words: boron isotope, tourmaline, porphyroclastic lava, Xiangshan uranium ore-field

CLC Number: 

  • P619.14
[1] 王濮. 系统矿物学[M]. 北京:地质出版社,1982. Wang Pu. System of Mineralogy[M]. Beijing:Geological Publishing House, 1982.
[2] Dietrich R V. The Tourmaline Group[M]. New York:Van Nostrand Reinhold Company, 1985.
[3] Bloodaxe E S, Hughes J M, Dyar M D, et al. Linking Structure and Chemistry in the Schorl-Dravite Series[J]. American Mineralogist, 2015, 84(5):922-928.
[4] Hinsberg V J V, Henry D J, Marschall H R. Tour-maline:An Ideal Indicator of Its Host Environment[J]. Canadian Mineralogist, 2011, 49(1):1-16.
[5] Dutrow B L, Henry D J. Tourmaline:A Geologic DVD[J]. Elements, 2011, 7(5):301-306.
[6] Ryan J G, Langmuir C H. The Systematics of Boron Abundances in Young Volcanic Rocks[J]. Geochim Cos Mochim Acta, 1993, 57:1489-1498.
[7] Mc Donough W F, Sun S S. The Composition of the Earth[J]. Chem Geol, 1995, 120(9):223-253.
[8] 黄世强,宋玉财,程杨,等. 滇西茅草坪脉状铜矿床电气石的发育特征、成分及其意义[J]. 岩石矿物学杂志,2016,35(1):124-138. Huang Shiqiang, Song Yucai, Cheng Yang, et al. Tourmaline in the Maocaoping vein Cu Deposit, Western Yunnan:Characteristics, Chemical Composition, and Its Significance[J]. Acta Petrologica et Mineralogica, 2016, 35(1):124-138.
[9] Palmer M R. BoronIsotope Systematics of Hydrother-mal Fluids and Tourmalines:A Synthesis[J]. Chem Geol, 1991, 94(2):111-121.
[10] Palmer M R, Swihart G H. Boron Isotope Geoche-mistry:An Overview[J]. Reviews in Mineralogy and Geochemistry, 1996, 33(1):709-744.
[11] Jiang S Y, Palmer M R, Peng Q M, et al. Chemical and Stable Isotope (B, Si, and O) Compositions of Proterozoic Metamorphosed Evaporite and Associated Tourmalines from the Houxianyu Borate Deposit, Eastern Liaoning, China[J]. Chem Geol, 1997, 135(3):189-211.
[12] Jiang S Y, Palmer M R, Slack J F, et al. Boron Isotope Systematics of Tourmaline Formation in the Sullivan Pb-Zn-Ag Deposit, British Columbia[J]. Chem Geol, 1999, 158(1/2):131-144.
[13] Jiang S Y. Boron Isotope Geochemistry of Hydro-thermal Ore Deposits in China:A Preliminary Study[J]. Phys Gem Earth:A, 200l, 26(5):851-858.
[14] 蒋少涌,于际民,倪培,等. 电气石:成岩成矿作用的灵敏示踪剂[J]. 地质论评,2000,46(6):594-604. Jiang Shaoyong, Yu Jimin, Ni Pei, et al. Tourmaline:A Sensitive Tracer for Petrogenesis and Minerogenesis[J]. Geological Review, 2000, 46(6):594-604.
[15] Krienitz M S, Trumbull R B, Hellmann A, et al. Hydrothermalgold Mineralization at the Hira Buddini Gold Mine, India:Constraintson Fluid Evolution and Fluid Sources from Boron Isotopic Compositionsof Tourmaline[J]. Mineralium Deposita, 2008, 43(4):421-434.
[16] Pal D C, Trumbull R B,Wiedenbeck M. Chemical and Boron Isotope Compositions of Tourmaline from the Jaduguda U (Cu-Fe) Deposit, Singhbhum Shear Zone, India:Implications for the Sources and Evolution of Mineralizing Fluids[J]. Chemical Geology, 2010, 277(3):245-260.
[17] 巫建华,刘帅,余达淦,等. 地幔流体与铀成矿模式[J]. 铀矿地质,2005,21(4):196-203. Wu Jianhua, Liu Shuai, Yu Dagan, et al. Mantle Geofluid and Uranium Ore-Formation Model[J]. Vranium Geology, 2005, 21(4):196-203.
[18] 王运,胡宝群,王倩,等. 邹家山铀矿床伴生重稀土元素的赋存特征[J]. 吉林大学学报(地球科学版),2018,48(3):719-735. Wang Yun, Hu Baoqun, Wang Qian, et al. Occurrence Characteristics of HREE in Zoujiashan Uranium Deposit[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3):719-735.
[19] 周肖华,王祝宁. 相山碎斑熔岩岩石特征及其成因探讨[J]. 铀矿地质,2012,28(2):72-77. Zhou Xiaohua, Wang Zhuning. Characteristics and Genesis of Porphyroclastic Lava Rock in Xiangshan[J]. Uranium Geology, 2012, 28(2):72-77.
[20] 陈迪云,章邦桐. 570矿床地质特征及成矿条件[J]. 东华理工大学学报(自然科学版),1994(3):212-218. Chen Diyun, Zhang Bangtong. Geological Characteristics and Ore-Forming Conditions of No.570 Deposit[J]. Journal of East China Institute of Technology (Natural Science Edition), 1994(3):212-218.
[21] 陈小明,陆建军,刘昌实,等. 桐庐、相山火山-侵入杂岩单颗粒锆石U-Pb年龄[J]. 岩石学报,1999,15(2):272-278. Chen Xiaoming, Lu Jianjun, Liu Changshi, et al. Single-Grain Zircon U-Pb Isotopicages of the Volcanic-Intrusive Complexes in Tonglu and Xiangshan Areas[J]. Acta Petrologica Sinica, 1999, 15(2):272-278.
[22] 邱爱金,郭令智,郑大瑜,等. 大陆构造作用对相山富大铀矿形成的制约[M]. 北京:地质出版社,2002. Qiu Aijin, Guo Lingzhi, Zheng Dayu, et al. Constraints of Continental Tectonic Action on Formation of Rich and Large Uranium Deposits in Xiangshan, Jiangxi Province[M].Beijing:Geological Publishing House, 2002.
[23] 王德滋,刘昌实,沈渭洲,等. 江西东乡相山中生代S型火山岩带的发现及其地质意义[J]. 科学通报,1991,36(19):1491-1493. Wang Dezi, Liu Changshi, Shen Weizhou, et al. The Discovery and Genetic Significance of Mesozoic S-Type Volcanic Rocks of Dongxiang-Xiangshan, Jiangxi Province[J]. Science Bulletin, 1991, 36(19):1491-1493.
[24] 王德滋,刘昌实,沈渭洲,等. 桐庐I型和相山S型两类碎斑熔岩对比[J]. 岩石学报,1993,9(1):44-54. Wang Dezi, Liu Changshi, Shen Weizhou, et al. The Contrast Between Tonglu I-Type and Xiangshan S-Type Clastoporphyritic Lava[J]. Acta Petrologica Sinica, 1993, 9(1):44-54.
[25] 刘昌实,楚雪君. 江西东乡-相山中生代火山岩中富铝矿物的发现和成因意义[J]. 地质论评,1992,38(2):157-163. Liu Changshi, Chu Xuejun. The Discovery and Genetic Significance of Al-Rich Minerals in Mesozoic Volcanic Rocks of Dongxiang-Xiangshan, Jiangxi Province[J]. Geological Review, 1992, 38(2):157-163.
[26] 赵沔,杨水源,左仁广,等. 赣杭构造带相山火山侵入杂岩的岩浆演化特征:来自斜长石和黑云母的化学成分研究[J]. 岩石学报,2015,31(3):759-768. Zhao Mian, Yang Shuiyuan, Zuo Renguang, et al. Magmatic Evolution Characteristics of Xiangshan Volcanic-Intrusive Complex from the Gan-Hang Belt:Studies on the Mineral Chemistry of Plagioclase and Biotite[J]. Acta Petrologica Sinica, 2015, 31(3):759-768.
[27] 杨水源,蒋少涌,赵葵东,等. 江西相山铀矿田邹家山矿床中流纹斑岩的锆石U-Pb年代学、岩石地球化学与Sr-Nd-Hf同位素组成[J]. 岩石学报,2012,28(12):3915-3928. Yang Shuiyuan, Jiang Shaoyong, Zhao Kuidong, et al. Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopic Compositions of the Rhyolite Porphyry from the Zoujiashan Deposit in Xiangshan Uranium Ore Field, Jiangxi Province, SE China[J]. Acta Petrologica Sinica, 2012, 28(12):3915-3928.
[28] 邵飞,范衡,夏菲,等. 相山矿田斑岩型铀矿床地球化学特征及成矿机制探讨[J]. 东华理工大学学报(自然科学版),2011,34(4):308-314. Shao Fei, Fan Heng, Xia Fei, et al. Metallogenic Mechanism and Geochemical Characteristics of Porphyry Type Uranium Deposits,Xiangshan Ore Field[J]. Journal of East China Institute of Technology(Natural Science Edition), 2011, 34(4):308-314.
[29] 王传文,侯文尧,万国良,等. 相山及邻区碎斑流纹岩的特征和成因[J]. 放射性地质,1982(3):193-198. Wang Chuanwen, Hou Wenyao, Wan Guoliang, et al. The Characteristics and Genesis of Porphyroclastic Rhyolite from Xiangshan and Adjacent Areas[J]. Radioactive Geology, 1982(3):193-198.
[30] 郭福生,杨庆坤,孟祥金,等. 江西相山酸性火山-侵入杂岩体地球化学特征与岩石成因[J]. 地质学报,2016,90(4):769-784. Guo Fusheng, Yang Qingkun, Meng Xiangjin, et al. Geochemical Characteristics and Petrogenesis of the Acidic Volcano-Intrusive Complexes, Xiangshan, Jiangxi[J]. Acta Geologica Sinica, 2016, 90(4):769-784.
[31] 范洪海,凌洪飞,王德滋,等. 江西相山铀矿田成矿物质来源的Nd、Sr、Pb同位素证据[J]. 高校地质学报,2001,7(2):139-145. Fan Honghai, Ling Hongfei, Wang Dezi, et al. Ore-Forming Material Sources for Xiangshan Uranium Ore-Field in Jiangxi Province:Evidence from Nd-Sr-Pb Isotopes[J]. Geological Journal of China Universitiesf, 2001, 7(2):139-145.
[32] 孙占学. 相山铀矿田铀源的地球化学证据[J]. 矿物学报,2004,24(1):19-24. Sun Zhanxue. Uranium Sources of the Xiangshan Uranium Ore-Field:Geochemical Evidence[J]. Acta Mineralogica Sinica, 2004, 24(1):19-24.
[33] 陈正乐,潘家永,陈柏林,等. 江西乐安相山铀矿床构造-成矿演化模式[J]. 矿床地质,2012,31(增刊1):191-192. Chen Zhengle, Pan Jiayong, Chen Bolin, et al. Tectonic-Metallogenic Evolution Model of Le'An Uranium Deposit Jiangxi Province[J]. Mineral Deposits, 2012, 31(Sup.1):191-192.
[34] 杨庆坤. 江西相山矿田岩浆作用与铀多金属成矿[D]. 北京:中国地质大学,2015. Yang Qingkun. Genesis of the Volcanic-Intrusive Complex and Metallogenesis of Uranium Polymetallic in the Xiangshan Ore-Field of Jiangxi Province[D]. Beijing:China University of Geosciences, 2015.
[35] 李子颖,李秀珍,林锦荣. 试论华南中新生代地幔柱构造、铀成矿作用及其找矿方向[J]. 铀矿地质,1999,15(1):9-17. Li Ziying, Li Xiuzhen, Lin Jinrong. On the Meso Cenozoic Mantle Plume Tectonics, Its Relationship to Uranium Metallogenesis and Prospecting Directions in South China[J]. Uranium Geology, 1999, 15(1):9-17.
[36] 吴玉. 相山铀矿田成矿流体地球化学特征及矿床成因探讨[D]. 南昌:东华理工大学,2013. Wu Yu. The Geochemical Characteristics of Ore-Forming Fluid and Ore Genesis from the Xiangshan Uranium Orefield[D]. Nanchang:Journal of East China Institute of Technology, 2013.
[37] Yang S Y, Jiang S Y. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic-Intrusive Complex, Southeast China:Evidence for Boron Mobilization and Infiltration During Magmatic-Hydrothermal Processes[J]. Chemical Geology, 2012, 53(1):187-192.
[38] 郭福生,谢财富,姜勇彪,等. 江西相山-鹿冈区域地质及铀多金属成矿背景[M]. 北京:地质出版社,2017. Guo Fusheng, Xie Caifu, Jiang Yongbiao, et al. Regional Geology and U-Polymetallic Mineralization Background in Xiangshan-Lugang Area, Jiangxi Province[M]. Beijing:Geological Publishing House, 2017.
[39] 范洪海,王德滋,刘昌实,等. 江西相山潜火山岩中淬冷包体的发现及其成因机制探讨[J]. 地质学报,2001,75(1):64-69. Fan Honghai, Wang Dezi, Liu Changshi, et al. Discovery of Quenehed Enclaves in Subvolcanic Rocks in Xiangshan, Jiangxi Province and Its Genetic Mechanism[J]. Acta Geologica Sinica, 2001, 75(1):64-69.
[40] 范洪海,汪相,王德滋,等. 江西相山火山-侵入杂岩矿物学特征研究及其示踪意义[J]. 矿物学报,2009,29(增刊1):8-9. Fan Honghai, Wang Xiang, Wang Dezi, et al. Study on Mineralogical Characteristics and Its Significance for Tracing Invasion of Volcanic-Intrusive Complex in Jiangxi Xiangshan[J]. Acta Mineralogica Sinica, 2009, 29(Sup.1):8-9.
[41] Henry D J, Dutrow B L. Metamorphic Tourmaline and Its Petro-Logic Applications[J]. Reviews in Mineralogy and Geochemistry, 1996, 33(1):503-557.
[42] John C Schumacher. 角闪石电子探针分析数据中三价铁比值的估算[J]. 岩石矿物学杂志,2001,20(2):189-198. Schumacher J C. The Estimation of Ferric Iron Ratio in Electronic Microprobe Analysis of Amphibole[J]. Acta Petrologicaet Mineralogica, 2001, 20(2):189-198.
[43] Jiang S Y, Radvanec M, Nakamurac E, et al. Chemical and Boron Isotopic Variations of Tourmaline in the Hnilec Granite-Related Hydrothermal System, Slovakia:Constraints on Magmatic and Metamorphic Fluid Evolution[J]. Lithos, 2008, 106(1/2):1-11.
[44] Gonfiantini R, Tonarini S, Groning M, et al. Intercomparison of Boron Isotope and Concentration Measurements:Part Ⅱ:Evaluation of Results[J]. Geostandard Geoanal Res, 2003, 27(1):41-57.
[45] 侯可军,李延河,肖应凯,等. LA-MC-ICP-MS硼同位素微区原位测试技术[J]. 科学通报,2010,55(22):2207-2213. Hou Kejun, Li Yanhe, Xiao Yingkai, et al. Micro In Situ Boron Isotope Measurement Technique by LA-MC-ICP-MS[J].Science Bulle, 2010, 55(22):2207-2213.
[46] 郭海锋,夏小平,韦刚健,等. 湘南上堡花岗岩中电气石LA-MC-ICPMS原位微区硼同位素分析及地质意义[J]. 地球化学,2014,43(1):11-19. Guo Haifeng, Xia Xiaoping, Wei Gangjian, et al. LA-MC-ICPMS In-Situ Boron Isotope Analyses of Tourmalines from the Shangbao Granites (Southern Hunan Province) and Its Geological Significance[J]. Geochemistry, 2014, 43(1):11-19.
[47] Ishikawa T, Tera F, Nakazawa T. Boron Isotope and Trace Element Systematics of the Three Volcanic Zones in the Kam-Chatka Arc[J]. Geochim Cosmochim Acta, 2001, 65(24):4523-4537.
[48] Henry D J, Novák M, Hawthorne F C, et al. No-menclature of the Tourmaline Supergroup Minerals[J]. American Mineralogist, 2011, 96(5/6):895-913.
[49] 于淼,丰成友,刘洪川,等. 青海尕林格铁矿床电气石矿物学、元素地球化学及成因研究[J]. 矿床地质,2016,35(1):69-84. Yu Miao, Feng Chengyou, Liu Hongchuan, et al. Mineralogy, Element Geochemistry and Genesis of Tourmaline from Galingeskarn Deposit, Qinghai Province[J]. Mineral Deposits, 2016, 35(1):69-84.
[50] 黄小勇,张辉,唐勇,等. 广西银屏富B花岗岩及其晶洞中电气石的化学组成特征以及对岩浆-热液演化的指示[J]. 矿物学报,2008,28(1):25-34. Huang Xiaoyong, Zhang Hui, Tang Yong, et al. Chemical Composition of Tourmailines from the B-Rich Granite and Miarolitic Cavities in Yinping, Guangxi and Its Iimplications for Evolution of the Magmatic-Hydrothermal System[J]. Acta Mineralogica Sinica, 2008, 28(1):25-34.
[51] 黄作良,莫珉,祖恩东. 辽东硼矿床中电气石的矿物学特征及成因意义[J]. 岩石矿物学杂志,1996,15(4):365-378. Huang Zuoliang, Mo Min, Zu Endong. Mineralogical Features and Genetic Significance of Tourmalines from Boron Deposits in Eastern Liaoning[J]. Acta Petrrologicaet Mineralogica, 1996, 15(4):365-378.
[52] 蒋少涌. 硼同位素及其地质应用研究[J]. 高校地质学报,2000,6(1):1-16. Jiang Shaoyong. Boron Isotope and Its Geological Applications[J]. Geological Journal of China Universities, 2000, 6(1):1-16.
[53] Kasemann S, Erzinger J, Franz G. Boron Recycling in the Con-Tinental Crust of the Central Andes from the Palaeozoic to Mesozoic, NW Argentina[J]. Contrib Mineral Petrol, 2000, 140(3):328-343.
[54] Marschall H R, Ludwig T. Re-Examination of the Boron Isotopic Composition of Tourmaline from the Lavicky Granite, Czech Republic, by Secondary Ion Mass Spectrometry:Back to Normal[J]. Geochem J, 2006, 40(6):631-638.
[55] Matthews A, Putlitz B, Hamiel Y, et al. Volatile Trans-Port During the Crystallization of Anatectic Melts:Oxygen, Boron and Hydrogen Stable Isotope Study on the Metamorphic Complex of Naxos, Greece[J]. Geochim Cosmochim Acta, 2003, 67(17):3145-3163.
[56] Trumbull R, Krienitz M S, Gottesmann B, et al. Chemical and Boron-Isotope Variations in Tourmalines from an S-Type Granite and Its Source Rocks:The Erongo Granite and Tourmalinites in the Damara Belt, Namibia[J]. Contrib Mineral Petrol, 2008, 155(1):1-18.
[57] Frondel C, Collette R L. Synthesis of Tourmaline by Reaction of Mineral Grains with NaCl-H3BO3 Solution, and Its Implications in Rockmetamorphism[J]. American Mineralogist, 1957, 42:754-758.
[58] Sinclair W D, Richardson J M. Quartz-Tourmaline Orbicules in the Seagull Batholith, Yukon Territory[J]. Canadian Mineralogist, 1992, 30(3):923-935.
[59] Taylor R P, Ikingura J R, Fallick A E, et al. Stable Isotope Compositions of Tourmalines from Granites and Related Hydrothermal Rocks of the Karagwe-Ankolean Belt, Northwest Tanzania[J]. Chemical Geology Isotope Geoscience, 1992, 94(3):215-227.
[60] Henry D J,Guidotti C V. Tourmaline as a Petro-genetic Indicatormineral:An Example from the Staurolite-Grade Metapelites of NW Maine[J]. American Mineralogist, 1985, 70(1/2):1-15.
[61] Henry D J, Milka K de Brodtkorb. Mineral Chemis-try and Chemical Zoning in Tourmalines, Pampa del Tamboreo, San Luis, Argentina[J], Journal of South American Earth Sciences, 2009, 28(2):132-141.
[62] 郑大中. 铀的迁移富集机理新探索[J]. 四川地质学报,2003,23(2):77-86. Zheng Dazhong. A New Approach to the Migration-Enrichment Mechanism for Uranium[J]. Acta Geologica Sichuan, 2003, 23(2):77-86.
[63] 赵友东,吴俊奇,凌洪飞,等. 赣南富城岩体黑云母及其蚀变产物绿泥石的矿物化学研究:对铀成矿的指示意义[J]. 矿床地质,2016,35(1):153-168. Zhao Youdong, Wu Junqi, Ling Hongfei, et al. Mineral Chemistry of Biotite and Chlorite in Western Part of Fucheng Granite, Southern Jiangxi Province:Implications for Uranium Mineralization[J]. Mineral Deposits, 2016, 35(1):153-168.
[64] 熊欣,徐文艺,吕庆田,等. 安徽庐枞盆地砖桥深部钻孔内电气石对铀钍成矿流体在高温阶段的指示意义[J]. 岩石矿物学杂志,2014,33(2):263-272. Xiong Xin, Xu Wenyi, Lü Qingtian, et al. Tourmaline as an Early Stage Indicator of Uranium Mineralization in the Deep Drilling, Luzong Basin, Anhui Province[J]. Acta Petrologica et Mineralogica, 2014, 33(2):263-272.
[65] 章邦桐,吴俊奇. 论热液蚀变与铀成矿富集作用的关系[J]. 地质论评,1990,36(3):238-244. Zhang Bangtong, Wu Junqi. On the Relationship Between Hydrothermal Alteration and Uranium Enrichment[J]. Geological Review, 1990, 36(3):238-244.
[66] 姜耀辉,蒋少涌,凌洪飞. 地幔流体与铀成矿作用[J]. 地学前缘,2004,11(2):491-499. Jiang Yaohui, Jiang Shaoyong, Ling Hongfei. Mantle-Derived Fluids and Uranium Mineralization[J]. Earth Science Frontiers, 2004, 11(2):491-499.
[67] 刘英俊. 元素地球化学导论[M]. 北京:地质出版社, 1987. Liu Yingjun. Introduction of Elemental Geochemistry[M].Beijing:Geological Publishing House, 1987.
[68] 唐傲, 李光来, 周龙全,等. 赣中紫云山岩体含矿花岗岩黑云母成分特征及其成岩成矿意义[J]. 矿物岩石, 2015, 35(3):29-34. Tang Ao, Li Guanglai, Zhou Longquan, et al. Compositional Characteristics of Biotite in Ziyunshan Ore Bearing Granite, Central Jiangxi:Implications for Petrogenesis and Mineralization[J]. Mineral Petrol, 2015, 35(3):29-34.
[69] Pichavant M, Manning D. Petrogenesis of Tourma-line Granites and Topaz Granites; the Contribution of Experimental Data[J]. Physics of the Earth & Planetary Interiors, 1984, 35(1/2/3):31-50.
[70] 赵博,鲍波,于蕾,等. 再论富F熔体-溶液流体体系的成矿效应[J]. 地质科技情报,2014,33(4):123-134. Zhao Bo, Bao bo, Yu Lei, et al. Further Discussion on the Metallogenic Effect of F-Rich Silicate Melt-Solution Fluid System[J]. Geological Science & Technology Information, 2014, 33(4):123-134.
[71] 唐傲,李光来,周龙全,等. 赣南茅坪钨矿伟晶岩壳中环带云母的特征及对岩浆-热液演化过程的指示意义[J]. 地质科技情报,2016,35(1):30-37. Tang Ao, Li Guanglai, Zhou Longquan, et al. Geological Characteristics of Micas with Zonal Structure in Pegmatite from Maoping Tungsten Deposit and Its Significance to Magma-Fluid Evolution Process,Southern Jiangxi[J]. Geological Science & Technology Information, 2016, 35(1):30-37.
[72] 邵飞,邹茂卿,何晓梅,等. 相山矿田斑岩型铀矿成矿作用及深入找矿[J]. 铀矿地质,2008,24(6):321-326. Shao Fei, Zou Maoqing, He Xiaomei, et al. Porphyry-Type Uranium Metallogenesis and Further Exploration in Xiangshan Orefield[J]. Uranium Geology, 2008, 24(6):321-326.
[73] 杨庆坤,黄强太,孙清钟,等. 江西相山矿田硫铅同位素地球化学特征[J]. 矿物岩石地球化学通报,2015,30(4):755-762. Yang Qingkun, Huang Qiangtai, Sun Qingzhong, et al. Geological Characteristics of Sulfur and Lead Isotopesin the Xiangshan Ore Field[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2015, 30(4):755-762.
[74] Van Hinsberg V J, Henry D J, Dutrow B L. Tour-maline as a Petrologic Forensic Mineral:A Unique Recorder of Its Geologic Past[J]. Elements, 2011, 7(5):327-332.
[75] Slack J F, Palmert M R, Stevens B P J. Boron Isotope Evidence for the Involvement of Non-Marine Evaporites in the Origin of the Broken Hill Ore Deposits[J]. Nature, 1989, 342:913-916.
[76] Pal D C, Trumbull R B, Wiedenbeck M. Chemical and Boron Isotope Compositions of Tourmaline from the Jaduguda U(-Cu-Fe) Deposit, Singhbhum Shear Zone, India:Implications for the Sources and Evolution of Mineralizing Fluids[J]. Chem Geol, 1989, 277(3/4):245-260.
[77] Slack J F, Palmer M R, Stevens B P J, et al. Origin and Significance of Tourmaline-Rich Rocks in the Broken Hill Dis-Trict, Australia[J]. Econ Geol, 1993, 88(3):505-541.
[78] 方锡珩,侯文尧,万国良. 相山破火山口火山杂岩体的岩石学研究[J]. 岩矿测试,1982,1(1):1-10. Fang Xiheng, Hou Wenyao, Wan Guoliang. Petrographic Studies of the Volcanic Complex in the Xiangshan Caldera[J]. Acta Petrologica Mineralogicaet Analytica, 1982, 1(1):1-10.
[79] 夏林圻. 相山中生代含铀火山杂岩岩石地球化学[M]. 北京:地质出版社,1992. Xia Linqi. Geochemistry of Mesozoic Uranium-Bearing Volcanic Complex in Xiangshan, Jiangxi Province[M].Beijing:Geological Publishing House, 1992.
[80] 王德滋,刘昌实,沈渭洲,等. 华南S型火山杂岩与成矿[J]. 南京大学学报(自然科学版),1994,30(2):322-333. Wang Dezi, Liu Changshi, Shen Weizhou, et al. S-Type Volcanic Complexes in South China and Metallogenesis[J]. Journal of Nanjing University(Natural Science Edition), 1994, 30(2):322-333.
[81] 段芸,赵连泽,范洪海,等. 江西相山火山-侵入杂岩及其包体稀土元素地球化学[J]. 高校地质学报,2001,7(1):92-98. Duan Yun, Zhao Lianze, Fan Honghai, et al. REE-Geochemistry of Mesozoic Volcanic-Intrusive Complex and Dark Inclusions in Xiangshan District, Jiangxi Pronvince[J]. Geological Journal of China Universities, 2001, 7(1):92-98.
[82] 范洪海,凌洪飞,沈渭洲,等. 相山火山-侵入杂岩Nd-Sr-Pb同位素地球化学特征[J]. 岩石学报,2001,17(3):395-402. Fan Honghai, Ling Hongfei, Shen Weizhou, et al. Nd-Sr-Pb Isotope Geochemistry of the Volcanic-Intrusive Complex at Xiangshan, Jiangxi Province[J]. Acta Petrologica Sinica, 2001, 17(3):395-402.
[1] WANG Yu-ji, XU Shuang-ying, ZHAO Yi-xin, JIANG Yin-shan. Photocatalytic Properties of TiO2/Tourmaline Composite [J]. J4, 2012, 42(2): 514-518.
[2] AN Yong-lei, ZHANG Lan-ying, ZHANG Yang, LIU Na, GAO Song, CHANG Hao. Heat Treatment of Tourmaline and Its Multi-Function on Purifying Water [J]. J4, 2011, 41(1): 235-240.
[3] WEI Cun-di, SUN Yan-bin, YANG Dian-fan, SUN Shuang. Application of Tourmaline on Activating Water [J]. J4, 2010, 40(6): 1450-1455.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!