Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (3): 934-940.doi: 10.13278/j.cnki.jjuese.20170214

Previous Articles    

Hapke Model Parameter Inversion of Apollo 16 Landing Area and Model Sensitivity Analysis

Xin Xin, Chen Shengbo, Qin Wenhan, Li Donghui, Lu Tianqi, Tian Fenfen   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-25 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41490630, 41372337) and National Science and Technology Major Project of the Ministry of Science and Technology of China (04-Y20A35-9001-15/17)

Abstract: The photometric behavior of the moon's surface describes how the reflected solar radiation varies with incidence, emission, and solar phase angles, depending on the physical and chemical properties of the lunar soils, such as the particle size, the shape, the porosity, and the mineralogical composition. In order to analyze the lunar photometric behavior and understand the reason of regional differences, we retrieved the photometric parameters of Hapke model using the moon mineralogy mapper data in the Apollo 16 landing area. The influence of the Hapke model photometric parameters on the bidirectional reflectance was analyzed. The inversion results showed that the parameter b and hS of the model varied slightly, while the parameter w of the model changed to certain extent. The difference of reflectance is mainly caused by the w in the study area. The mineral particles in the study area in lunar soil forward scattering dominates. The soil structure and particle size are overall similar, but at least one factor of the porosity, the weathering layer filling state, the surface roughness and other factors is different.

Key words: reflectance, photometric behavior, M3 data, Hapke model

CLC Number: 

  • P691
[1] Hapke B.Theory of Reflectance and Emittance Spec-troscopy[M]. 2nd ed. New York:Cambridge University Press, 2012.
[2] 张江, 凌宗成. 月球表面光度行为的地域依赖性分析[J]. 中国科学:物理学力学天文学, 2013, 43(11):1465-1469. Zhang Jiang, Ling Zongcheng. Terrain Dependence of the Lunar Surface Photometric Behavior[J]. Scientia Sinica:Physica, Mechanica & Astronomica, 2013, 43(11):1465-1469.
[3] Minnaert M. The Reciprocity Principle in Lunar Pho-tometry[J]. Astrophysical Journal, 1941, 93(3):403-410.
[4] Shkuratov Y G, Kreslavsky M A.A Model of Lunar Photometric Function[C]//Lunar and Planetary Science Conference. Cambridge:NASA Astrophysics Data System, 1998.
[5] 李先, 陈圣波, 王旭辉,等. 基于辐射传输模型的水底反射率定量遥感反演研究[J]. 吉林大学学报(地球科学版), 2008,38(增刊1):235-237. Li Xian, Chen Shengbo, Wang Xuhui, et al. Study Based in Radioactive Transfer Model of the Quantitative Remote Sensing of Water Bottom Reflectance[J]. Journal of Jilin University (Earth Science Edition), 2008,38(Sup. 1):235-237.
[6] 崔腾飞. 月表矿物二向性反射模型研究[D]. 长春:吉林大学,2012. Cui Tengfei. Study on Bidirectional Reflectance Model of Mineral on Lunar Surface[D]. Changchun:Jilin University, 2012.
[7] 张江, 凌宗成, 李勃,等.月球Reiner Gamma漩涡地区物质的光度行为及分类[J]. 岩石学报,2016, 32(1):113-118. Zhang Jiang, Ling Zongcheng, Li Bo, et al. Photometric Behaviors and Classification of Reiner Gamma Swirl Materials[J]. Acta Petrologica Sinica, 2016, 32(1):113-118.
[8] 许学森, 刘建军, 刘斌,等.月表光度模型研究进展[J]. 遥感技术与应用,2016,31(4):634-644. Xu Xuesen, Liu Jianjun, Liu Bin, et al. Progress on Research of Lunar Photometric Model[J]. Remote Sensing Technology and Application, 2016, 31(4):634-644.
[9] Mcewen A. A Precise Lunar Photometric Function[C]//Lunar and Planetary Science Conference. Cambridge:NASA Astrophysics Data System, 1996.
[10] Johnson J R, Shepard M K, Grundy W M, et al. Spectrogoniometry and Modeling of Martian and Lunar Analog Samples and Apollo Soils[J]. Icarus, 2013, 223(1):383-406.
[11] Sato H, Robinson M S, Hapke B, et al. Resolved Hapke Parameter Maps of the Moon[J]. Journal of Geophysical Research:Planets, 2014, 119(8):1775-1805.
[12] Boardman J W, Pieters C M, Green R O, et al. Measuring Moonlight:An Overview of the Spatial Properties, Lunar Coverage, Selenolocation, and Related Level 1B Products of the Moon Mineralogy Mapper[J]. Journal of Geophysical Research Atmospheres, 2011, 116(6):100-114.
[13] Hapke B. Bidirectional Reflectance Spectroscopy:1:Theory[J]. Journal of Geophysical Research, 1981, 86(B4):3039-3054.
[14] 孟治国, 陈圣波, 崔腾飞,等. 基于嫦娥一号卫星激光高度计数据的月表有效反射率[J]. 吉林大学学报(地球科学版), 2010, 40(3):721-725. Meng Zhiguo, Chen Shengbo, Cui Tengfei, et al. Effective Reflectivity of the Lunar Surface Based on the Laser Altimeter Data from the Chang'E-1 Orbiter[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(3):721-725.
[15] Wang J, White K, Robinson G J. Estimating Surface Net Solar Radiation by Use of Landsat-5 TM and Digital Elevation Models[J]. International Journal of Remote Sensing, 2000, 21(1):31-43.
[16] 田丰. 全波段(0.35~25μm)高光谱遥感矿物识别和定量化反演技术研究[D]. 北京:中国地质大学(北京), 2010. Tian Feng. Identification and Quantitative Retrieval of Minerals Information Integrating VIS-NIR-MIR-TIR(0.35~25μm) Hysoectral Data[D]. Beijing:China University of Geosciences (Beijing), 2010.
[17] Hapke B. Bidirectional Reflectance Spectroscopy:7:The Single Particle Phase Function Hockey Stick Relation[J]. Icarus, 2012, 221(2):1079-1083.
[18] Hapke B. Bidirectional Reflectance Spectroscopy:5:The Coherent Backscatter Opposition Effect and Anisotropic Scattering[J]. Icarus, 2002, 157(2):523-534.
[1] Hu Daqian, Wang Yanquan, Sha Qian, Wang Chunguang, Chen Xu, Ma Rui. Very Low Grade Metamorphic Temperatures of the Upper Paleozoic Strata in Northern Daxing'anling Area, NE China:Evidence from Raman Spectrum Studies of Carbonaceous Materials [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 188-197.
[2] TIAN Bo, ZHOU Yun-xuan, JIANG Yun-an, HOU Chang-mou. Application of ASTER Data for Land-Use Classification in Coastal Area of East Shenzhen [J]. J4, 2008, 38(1): 121-0128.
[3] FU Guang, WANG Guo-min,WANG You-gong. Sealing Ability Vertical Changes of the Vertical Fractures in Budate Group of Beier Depression, Hailaer Basin [J]. J4, 2007, 37(5): 913-0918.
[4] CHENG Bin, JIANG Qi-gang, ZHOU Yun-xuan,ZHAN Shao-bin. Decision Tree Based on ASTER Image Classification and Its Application [J]. J4, 2007, 37(1): 179-0184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!