Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (2): 394-401.doi: 10.13278/j.cnki.jjuese.20170246

Previous Articles     Next Articles

Tikhonov Regularization Iteration Method for High-Order Vertical Derivatives of Potential Field

Du Wei, Xu Jiashu, Wu Yangang, Hao Mengcheng   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-21 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Natural Science Foundation of China (40930314)

Abstract: In potential field data processing, high-order vertical derivative has important physical significance. It can divide superimposed anomalies generated by sources with different depth and size. With the order increase of the derivative, the resolution becomes higher, however the calculation of the higher order derivative is unstable. In this study we proposed the Tikhonov regularization iteration method for high-order vertical derivatives based on the combination of Tikhonov regularization method and iteration method,and obtained the recursive formula of Tikhonov regularization iterative method. Through analyzing the filter characteristics of the method, we can see that the method has certain stability and amplitude preservation in the calculation of high-order vertical derivative. The results of the model test and the real data show that the stability and practical value of the method are higher than that of the routine FFT method.

Key words: Tikhonov regularization, iteration method, potential field, vertical derivative

CLC Number: 

  • P631.1
[1] 肖锋,吴燕冈,孟令顺. 重力异常图中的边界增强和提取技术[J]. 吉林大学学报(地球科学版),2011,41(4):1197-1203. Xiao Feng, Wu Yangang, Meng Lingshun.Edge Enhancement and Detection Technology in Gravity Anomaly Map[J]. Journal of Jilin University (Earth Science Edition), 2011,41(4):1197-1203.
[2] 张冲,黄大年,秦朋波,等.重力场向下延拓的三阶Adams-Bashforth公式法[J]. 吉林大学学报(地球科学版),2017,47(5):1533-1542. Zhang Chong, Huang Danian, Qin Pengbo, et al. Third-Order Adams-Bashforth Formula Method for Downward Continuation of Gravity Field[J]. Journal of Jilin University (Earth Science Edition), 2017,47(5):1533-1542.
[3] 徐世浙. 用边界单元法计算任意形体的重力异常及其导数[J]. 石油物探, 1984,23(2):22-37. Xu Shizhe. The Calculation of the Gravitational Anomaly and Its Derivative of the Geologic Body with Arbitrary Configuration by Boundary-Elements Method[J]. Geophysical Prospecting for Petroleum, 1984, 23(2):22-37.
[4] 汪炳柱. 用样条函数法求重力异常二阶垂向导数和向上延拓计算[J]. 石油地球物理勘探, 1996, 31(3):415-422. Wang Bingzhu. Computing the Vertical Second Derivative and Upward Continuation of Gravity Anomaly by Spline Function Method[J]. Oil Geophysical Prospecting, 1996, 31(3):415-422.
[5] 姚长利,黄卫宁,管志宁. 综合利用位场及其垂直梯度的快速样条曲化平方法[J]. 石油地球物理勘探, 1997, 32(2):229-236. Yao Changli, Huang Weining,Guan Zhining. Fast Splines Conversion of Curvedsurface Potential Field and Vertical Gradient Data into Horizontal-Plane Data[J]. Oil Geophysical Prospecting, 1997, 32(2):229-236.
[6] Wang B, Krebes E S, Ravat D. High-Precision Poten-tial-Field and Gradient-Component Transformations and Derivative Computations Using Cubic B-Splines[J]. Geophysics, 2008, 73(5):135-142.
[7] Clarke G K C. Optimum Second-Derivative and Down-ward-Continuation Filters[J]. Geophysics, 1969, 34(3):424-437.
[8] 侯重初. 补偿圆滑滤波方法[J]. 石油物探, 1981, 20(2):22-29. Hou Zhongchu. Filtering of Smooth Compensation[J]. Geophysical Prospecting for Petroleum, 1981, 20(2):22-29.
[9] Pašteka R, Richter F P, Karcol R, et al. Regularized Derivatives of Potential Fields and Their Role in Semi-Automated Interpretation Methods[J]. Geophysical Prospecting, 2009, 57(4):507-516.
[10] 曾小牛, 李夕海, 贾维敏,等. 位场各阶垂向导数换算的新正则化方法[J]. 地球物理学报, 2015, 58(4):1400-1410. Zeng Xiaoniu, Li Xihai, Jia Weimin, et al. A New Regularization Method for Calculating the Vertical Derivatives of the Potential Field[J].Chinese Journal of Geophysics, 2015, 58(4):1400-1410.
[11] 王彦国, 张瑾. 位场高阶导数的波数域迭代法[J]. 物探与化探, 2016, 40(1):143-147. Wang Yanguo, Zhang Jin. The Iterative Method for Higher-Order Derivative Calculation of Potential Fields in Wave Number Domain[J]. Geophysical and Geochemical Exploration, 2016, 40(1):143-147.
[12] Fedi M, Florio G. Detection of Potential Fields Sou-rce Boundaries by Enhanced Horizontal Derivative Method[J]. Geophysical Prospecting, 2001, 49(1):40-58.
[13] Fedi M, Florio G. A Stable Downward Continuation by Using the ISVD Method[J]. Geophysical Journal International, 2002, 151(1):146-156.
[14] Cooper G R J, Cowan D R. Filtering Using Variable Order Vertical Derivatives[J]. Computers & Geosciences, 2004, 30(5):455-459.
[15] 卞光浪, 翟国君, 高金耀,等. 总强度磁场稳健向下延拓的改进泰勒级数法[J]. 测绘学报, 2014,43(1):30-36. Bian Guanglang, Zhai Guojun, Gao Jinyao, et al. Improved Taylor Series Approach for Stable Downward Continuation of Total Strength of Geomagnetic Field[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(1):30-36.
[16] Xu M L, Yang C B, Wu Y G, et al. Edge Detection in the Potential Field Using the Correlation Coefficients of Multidirectional Standard Deviations[J]. Applied Geophysics, 2015, 12:23-34.
[1] Wang Taihan, Huang Danian, Ma Guoqing, Li Ye, Lin Song. Three-Dimensional Fast Gravity Inversion Using Parallel Preconditioned Algorithm [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 384-393.
[2] Zhang Chong, Huang Danian, Qin Pengbo, Wu Guochao, Fang Gang. Third-Order Adams-Bashforth Formula Method for Downward Continuation of Gravity Field [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1533-1542.
[3] Yu Dewu, Gong Shengping. Analysis of the Potential Field Downward Continuation Iteration Method [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 934-940.
[4] Ma Guoqing, Huang Danian, Du Xiaojuan, Li Lili. Hartley Transform in the Application of the Derivatives of Potential Field (Gravity and Magnetic) Data [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 328-335.
[5] SUN Jian-guo. On the Physical Meaning of the Surface Potential and the Surface Charge Density Reflection Functionsin in the Quasi-Analytical Approximations of the D.C. Electrical Potential Field [J]. J4, 2012, 42(2): 545-553.
[6] WANG Yan-guo, WANG Zhu-wen, ZHANG Feng-xu, MENG Ling-shun, ZHANG Jin, TAI Zhen-hua. Derivative-Iteration Method for Downward Continuation of Potential Fields [J]. J4, 2012, 42(1): 240-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!