Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (6): 1711-1724.doi: 10.13278/j.cnki.jjuese.20170295

Previous Articles    

Petrogenesis and Sedimentary Environment of Permian Maihanhada Formation Cherts in Yagan Region of Alxa Right Banner, Inner Mongolia

Shi Jizhong, Lu Jincai, Wei Jianshe, Niu Yazhuo, Han Xiaofeng, Zhang Yuxuan   

  1. Xi'an Center, China Geological Survey, Xi'an 710054, China
  • Received:2018-01-25 Published:2018-11-26
  • Supported by:
    Supported by Project of China Geological Survey (DD20160172) and National Natural Science Foundation of China (41402097)

Abstract: The authors discussed the petrogenesis and sedimentary environment of the Permian cherts from the Maihanhada Formation in Haobiru and Hangwula sections of Alxa Right Banner according to the study of the petrologic characteristics,major and rare earth elements. The geochemical test results show that the SiO2 content of the cherts from Haobiru Section is 89.83%-94.16%,with an average of 92.01%;Al/(Al+Fe+Mn) ratio is 0.49-0.65,with an average of 0.56;δCe value is 0.87-0.92,with an average of 0.89. The SiO2 content of the cherts from Hangwula Section is 75.93%-90.14%,with an average of 86.70%;Al/(Al+Fe+Mn) ratio is 0.68-0.78, with an average of 0.73; δCe value is 0.89-0.94, with an average of 0.90. In the Al-Fe-Mn triangular graph, the dots fall into the biochemically deposited area,which indicates its biochemical origin. On the other hand,Al2O3/(Al2O3+Fe2O3)value from Haobiru Section is 0.59-0.78,with an average of 0.71;MnO/TiO2 value is 0.17-0.88,with an average of 0.41;(La/Ce)N value is 1.07-1.25,with an average of 1.16; Ceanom value is -0.059——0.026,with an average of -0.043; Al2O3/(Al2O3+Fe2O3) value from Hangwula Section is 0.78-0.86,with an average of 0.83;MnO/TiO2 value is 0.04-0.40,with an average of 0.16;(La/Ce)N value is 1.02-1.15, with an average of 1.10;Ceanom value is -0.041——0.001, with an average of -0.029. In the discrimination plot of sedimentary environment of cherts,the rocks fall in the continental margin,indicating that the cherts in the study area were deposited in an oxygen-deficient environment. Based on the comprehensive analysis,it can be inferred that the sediments in the study area had been deposited in a coastal shallow marine environment in the continental margin during Early Permian.

Key words: Alxa Right Banner, Permian, chert, geochemistry, sedimentary environment

CLC Number: 

  • P588.24
[1] Adachi M, Yamamoto K, Sugisaki R. Hydrothermal Chert and Associated Siliceous Rocks from the Northern Pacific:Their Geological Significance as Indication of Ocean Ridge Activity[J]. Sedimentary Geology, 1986, 47(1/2):125-148.
[2] Murray R W, Brink M R, Jones D L, et al. Rare Earth Elements as Indicators of Different Marine Depositional Environments in Chert and Shale[J]. Geology, 1990, 18(3):268-271.
[3] Murray R W, Brink M R, Gerlach D L, et al. Rare Earth, Major, and Trace Elements in Chert from the Franciscan Complex and Monterey Group, California:Assessing REE Sources to Fine-Grained Marine Sediments[J]. Geochimica et Cosmochimica Acta, 1991, 55(7):1875-1895.
[4] Murray R W, Brink M R. Rare Earth, Major, and Trace Element Composition of Monterey and DSDP Chert and Associated Host Sediment:Assessing the Influence of Chemical Fractionation During Diagenesis[J]. Geochimica et Cosmochimica Acta, 1992, 56(7):2657-2671.
[5] Murray R W. Chemical Criteria to Identify the Depositional Environment of Chert:General Principles and Applications[J]. Sedimentary Geology, 1994, 90(3/4):213-232.
[6] Baldwin G J, Thurston P C, Kamber B S. High-Precision Rare Earth Element, Nickel, and Chromium Chemistry of Chert Microbands Prescreened with Insitu Analysis[J]. Chemical Geology, 2011, 285(1/2/3/4):133-143.
[7] Baltuck M. Provenance and Distribution of Tethyan Pelagic and Hemipelagic Siliceous Sediments, Pindos Mountains, Greece[J]. Sedimentary Geology, 1982, 31(1):63-88.
[8] Marin-Carbonne J, Chaussidon M, Robert F. Micro-meter-Scale Chemical and Isotopic Criteria(O and Si)on the Origin and History of Precambrian Cherts:Implications for Paleo-Temperature Reconstructions[J]. Geochimica et Cosmochimica Acta, 2012, 92:129-147.
[9] Michard A, de Albarede G, Michard G, et al. Rare Earth Elements and Uranium in High-Temperature Solutions from East Pacific Rise Hydrothermall Vent Field (138° W)[J]. Nature, 1983, 303:795-797.
[10] Herzig P M. Hydrothermal Silica Chimney Fielding the Galapagos Spreeding Center at 86°W[J]. Earth and Planet Science Letter, 1988, 89(1):281-320.
[11] 杨水源,姚静. 安徽巢湖平顶山中二叠统孤峰组硅质岩的地球化学特征及成因[J]. 高校地质学报,2008,14(1),39-48. Yang Shuiyuan, Yao Jing. Geochemistry and Origin of Siliceous Rocks from the Gufeng Formation of Middle Permian in the Pingdingshan Area, Chaohu Region, Anhui Province[J]. Geological Journal of China Universities, 2008, 14(1):39-48.
[12] 郑小明,尹海权,高磊,等. 内蒙古阿拉善北部杭乌拉地区早古生代硅质岩地球化学特征及其构造意义[J]. 古地理学报,2017,19(3):491-502. Zheng Xiaoming, Yin Haiquan, Gao Lei, et al. Geochemical Characteristics and Its Tectonic Significance of the Early Paleozoic Siliceous Rocks in Hangwula Area of Northern Alxa, Inner Mongolia[J]. Journal of Palaeogeography, 2017, 19(3):491-502.
[13] 唐世荣,王东安. 硅岩研究的进展[J]. 地球科学进展,1994,9(6):71-75. Tang Shirong, Wang Dong'an. Advances in Chert Research[J]. Advances in Earth Science, 1994, 9(6):71-75.
[14] 杨宗玉,罗平,刘波,等. 塔里木盆地阿克苏地区下寒武统玉尔吐斯组硅质岩分类及成因[J]. 地学前缘,2017,24(5):245-264. Yang Zongyu, Luo Ping, Liu Bo, et al. Analysis of Petrologic Characteristics and Origin of Siliceous Rocks During the Earliest Cambrian Yurtus Formation in the Aksu Area of Tarim Basin, Northwest China[J]. Earth Science Frontiers, 2017, 24(5):245-264.
[15] 何俊国,周永章,杨志军,等. 藏南彭错林硅质岩地球化学特征及沉积环境分析[J]. 吉林大学学报(地球科学版),2009,39(6):1055-1065. He Junguo, Zhou Yongzhang, Yang Zhijun, et al. Study on Geochemical Characteristics and Depositional Environment of Pengcuolin Chert, Southern Tibet[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(6):1055-1065.
[16] 雷卞军,阙洪培,胡宁,等. 鄂西古生代硅质岩的地球化学特征及沉积环境[J]. 沉积与特提斯地质,2002,22(2):70-79. Lei Bianjun, Que Hongpei, Hu Ning, et al. Geochemistry and Sedimentary Environments of the Palaeozoic Siliceous Rocks in Western Hubei[J]. Sedimentary Geology and Tethyan Geology, 2002, 22(2):70-79.
[17] 冯胜斌,周洪瑞,燕长海,等. 东秦岭二郎坪群硅质岩地球化学特征及其沉积环境意义[J]. 现代地质,2007,21(4):675-682. Feng Shengbin, Zhou Hongrui, Yan Changhai, et al. The Geochemical Characteristics of Cherts of Erlangping Group in East Qinling and Their Sedimentary Environment Importance[J]. Geoscience, 2007, 21(4):675-682.
[18] 张宇轩,牛亚卓,魏建设,等. 内蒙古阿拉善北部好比如地区下石炭统好比如组时代修订及地质意义[J]. 地质通报,2018,37(1):51-62. Zhang Yuxuan, Niu Yazhuo, Wei Jianshe, et al. Chronology of the Haobiru Formation in the Haobiru Area of Northern of Alxa, Inner Mongolia and Its Geological Implications[J]. Geological Bulletin of China, 2018, 37(1):51-62.
[19] 卢进才,魏仙样,陈高潮,等. 阿拉善右旗杭乌拉地区下二叠统埋汗哈达组烃源岩特征[J]. 吉林大学学报(地球科学版),2011,41(2):335-342. Lu Jincai, Wei Xianyang, Chen Gaochao, et al. Characteristics of Hydrocarbon Source Rocks in Lower Permian Maihanhada Formation in Hangwula Region of Alashan Right Banner[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(2):335-342.
[20] 史冀忠,陈高潮,李玉宏,等. 内蒙古西部额济纳旗雅干地区二叠系埋汗哈达组的岩石学特征及沉积环境[J]. 地质通报,2011,30(6):972-982. Shi Jizhong, Chen Gaochao, Li Yuhong, et al. Petrologic Characteristics and Sedimentary Environments of Permian Maihanhada Formation in Yagan Area of Ejin Banner, Western Inner Mongolia[J]. Geological Bulletin of China, 2011, 30(6):972-982.
[21] 卜建军,段先锋,牛志军. 内蒙古西部额济纳旗及邻区中二叠统腕足类动物群的特征和时代[J]. 地质通报,2011,30(6):943-954. Bu Jianjun, Duan Xianfeng, Niu Zhijun. Characteristics and Geological Age of Middle Permian Brachiopod Fauna from Ejin Banner and Its Vicinities, Western Inner Mongolia[J]. Geological Bulletin of China, 2011, 30(6):943-954.
[22] 杜远生,朱杰,顾松竹,等. 北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示[J]. 中国科学:D辑,2007,37(10):1314-1329. Du Yuansheng, Zhu Jie, Gu Songzhu, et al. Sedimentray Geochemistry and Tectonic Significance of Cambrian to Ordovician Cherts in North Qilian Orogenic Belt[J]. Science in China:Series D, 2007, 37(10):1314-1329.
[23] 周永章,付伟,杨志军,等. 藏南地区中生代硅质岩的地球化学特征及其成因意义[J]. 岩石学报,2008,24(3):600-608. Zhou Yongzhang, Fu Wei, Yang Zhijun, et al. Geochemical Characteristics of Mesozoic Chert from Southern Tibet and Its Petrogenic Implications[J]. Acta Petrologica Sinica, 2008, 24(3):600-608.
[24] 李红中,周永章,张连昌,等. 华北克拉通南部元古代熊耳群硅质岩地球化学及形成机制研究[J]. 岩石学报,2012,28(11):3679-3691. Li Hongzhong, Zhou Yongzhang, Zhang Lianchang, et al. Study on Geochemistry and Development Mechanism of Proterozoic Chert from Xiong'er Group in Southern Region of North China Craton[J]. Acta Petrologica Sinica, 2012, 28(11):3679-3691.
[25] 胡丽沙,徐亚军,杜远生,等. 广西东南部钦防海槽晚古生代硅质岩地球化学特征及其地质意义[J]. 古地理学报,2014,16(1):77-87. Hu Lisha, Xu Yajun, Du Yuansheng, et al. Geochemical Characteristics and Its Geological Significance of the Late Paleozoic Siliceous Rocks in Qinfang Through, Southeastern Guangxi[J]. Journal of Palaeogeography, 2014, 16(1):77-87.
[26] 朱杰,杜远生. 北祁连造山带老虎山奥陶系硅质岩地球化学特征及古地理意义[J]. 古地理学报,2007,9(1):69-76. Zhu Jie, Du Yuansheng. Geochemistry Characteristics and Palaeogeographic Significance of the Ordovician Siliceous Rocks from Laohushan Area, North Qilian Orogenic Belt[J]. Journal of Palaeogeography, 2007, 9(1):69-76.
[27] 杨建民,王登红,毛景文,等. 硅质岩岩石化学研究方法及其在"镜铁山式"铁矿床中的应用[J]. 岩石矿物学杂志,1999,18(2):108-120. Yang Jianmin, Wang Denghong, Mao Jingwen, et al. The Petrochemical Research Method for Silicalite and Its Application to the "Jingtieshan Type" Iron Deposits[J]. Acta petrologica et Mineralogica, 1999, 18(2):108-120.
[28] 刘家军,郑明华. 热水沉积硅质岩的地球化学[J]. 四川地质学报,1993,13(2):110-118. Liu Jiajun, Zheng Minghua. Geochemistry of Hydrothermal Sedimentary Silicalite[J]. Acta Geologica Sichuan, 1993, 13(2):110-118.
[29] Sugisaki R, Yamamoto K, Adachi M. Triassic Bedded Cherts in Central Japan are not Pelagic[J]. Nature, 1982, 298:644-647.
[30] 梁斌,王全伟,冯庆来,等. 川西鲜水河断裂带三叠系如年各组放射虫硅质岩的地球化学特征[J]. 地质科技情报,2004,23(1):16-20. Liang Bin, Wang Quanwei, Feng Qinglai, et al. Geochemistry of Radiolarian Silicalites of Triassic Runiange Formation in Xianshuihe Fault Belts, Northwest Sichuan Province[J]. Geological Science and Technology Information, 2004, 23(1):16-20.
[31] Wright J, Holler W T. Paleoredox Variation in Ancient Oceans Recorded by Rare Earth Elements in Fossil Apatite[J]. Geochimica et Cosmochimica Acta, 1987, 51:631-644.
[32] 丁林,钟大赉. 滇西昌宁-孟连带古特提斯洋硅质岩稀土元素和铈异常特征[J]. 中国科学:B辑,1995,25(1):93-100. Ding Lin, Zhong Dalai. Rare Earth Elemens and Ce Anomalies in the Chert of the Paleo-Tethys Ocean, Changning-Menglian Belt, Western Yunnan[J]. Science in China:Series B, 1995, 25(1):93-100.
[33] Armstrong H A, Owen A W, Floyd J D. Rare Earth Geochemistry of Arenig Cherts from the Ballantrae Ophiolite and Leadhills Imbricate Zone, Southern Scotland:Implications for Origin and Significance to the Caledonian Orogeny[J]. Journal of the Geological Society, 1999, 156(3):549-560.
[34] Zhou Yongzhang, Chown E H, Guha J. Hydrothe-rmal Origin of Precambrian Bedded Chert at Gusui, Guangdong, China:Petrologic and Geochemical Evidence[J]. Sedimentology, 1994, 41(3):605-619.
[35] 周永章,涂光炽,Edward H Chown,等. 粤西古水剖面震旦系顶部层状硅质岩的热水成因属性:岩石学和地球化学证据[J]. 沉积学报,1994,12(3):1-11. Zhou Yongzhang, Tu Guangzhi, Chown E H, et al. Hydrothermal Origin of Top Sinian Chert Formation at Gusui, Western Guangdong, Cihna:Petrologic and Gecohemical Evidence[J]. Acta Sedimentologica Sinica, 1994, 12(3):1-11.
[36] 卜建军,吴俊,段先锋,等. 银根额济纳旗盆地恩格尔乌苏一带二叠系腕足类动物群及其意义[J]. 地质科技情报,2013,32(3):1-5. Bu Jianjun, Wu Jun, Duan Xianfeng, et al. Permian Brachiopod Faunas from Engeerwusu Area in Yingen-Ejin Banner Basin and Its Significance[J]. Geological Science and Technology Information, 2013, 32(3):1-5.
[1] Lü Junchao, Shu Guanglong, Zhang Debao, Zhao Yan, Liu Guixiang, Bi Zhongwei. Geochronology and Metallogenic Epoch of Shenshan Fe-Cu Deposit in Zhalaite County, Inner Mongolia and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1683-1695.
[2] Yang Fan, Wang Yan, Na Fuchao, Fu Junyu, Zhang Guangyu, Sun Wei, Pang Xuejiao, Chen Jingsheng, Liu Miao, Li Bin. Geological Significance and Metallogenic Epoch of the Baiyinnuoer Pb-Zn Deposit in Inner Mongolia: Constraints from Geochemistry and Chronology of Intrusive Rocks [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(6): 1696-1710.
[3] Zhang Qiang, Ding Qingfeng, Song Kai, Cheng Long. Detrital Zircon U-Pb Geochronology and Hf Isotope of Phyllite of Langyashan Formation in Hongshuihe Iron Ore District of Eastern Kunlun and Their Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1085-1104.
[4] Cui Yachuan, Yu Jiejiang, Yang Wanzhi, Zhang Yuanhou, Cui Ce, Yu Jielu. Geochronology, Geochemistry and Petrogenesis of Hornblende Gabbro in Huangshan Area of Jueluotage Belt, Eastern Tianshan [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1105-1120.
[5] Guo Chuntao, Li Ruyi, Chen Shumin. Rare Earth Element Geochemistry and Genetic Model of Dolomite of Yingshan Formation in Gucheng Area, Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1121-1134.
[6] Zhao Xilin, Jiang Yang, Xing Guangfu, Yu Shengyao, Peng Yinbiao, Huang Wencheng, Wang Cunzhi, Jin Guodong. Chencai Early Paleozoic Subduction-Accretionary and Their Restrictions on Collage Between Cathaysia and Yangtze Block [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1135-1153.
[7] Fang Jing, Wang Fu, Fang Yuting, Pan Long, Li Yang, Hu Ke, Qi Wuyun, Wang Zhongliang. Correlation Analysis of Conductivity (EC), w(FeS2), pH of Drilled Clay Water and Its Application in Paleo-Environment Restoration: A Case Study of DC01 Core on West Plain of Bohai Bay [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1154-1164.
[8] Wang Chaoyang, Meng En, Li Zhuang, Li Yanguang, Jin Mengqi. Age, Petrogenesis and Their Constraints on Regional Crustal Evolution of Late Neoarchean Gneisses in Southeast Jilin Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 587-625.
[9] Qi Tianjiao, Xue Chunji, Xu Bixia. Zircon U-Pb Age and Geochemical Characteristics of Granites from Buheta Cu(Au) Mineralization District in Zhaosu County, Xinjiang Province [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 132-144.
[10] Sun Fanting, Liu Chen, Qiu Dianming, Lu Qian, He Yunpeng, Zhang Mingjie. Petrogenesis and Geodynamic Significance of Intermediate-Basic Intrusive Rocks in Xiaokuile River, Eastern Slope of the Great Xing'an Range: Evidences of Zircon U-Pb Geochronology, Elements and Hf Isotope Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 145-164.
[11] Zhang Chao, Cui Fanghua, Zhang Zhaolu, Geng Rui, Song Mingchun. Petrogenesis of Ore-Bearing Dioritic Pluton in Jinling Area in Western Shandong:Evidence from Zircon U-Pb Chronology and Petro-Geochemistry [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1732-1745.
[12] Shi Ke, Zhang Dayu, Ding Ning, Wang Deen, Chen Xuefeng. Geochronology, Geochemistry and Formation of Xiaoyao Rock in Southern Anhui Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1746-1762.
[13] Wang Shijie, Xu Zhongyuan, Dong Xiaojie, Du Yang, Cui Weilong, Wang Yang. Permian Tectonic Evolution of the Middle Section of Northern Margin of the North China Plate:Constraints from Zircon U-Pb Geochronology and Geochemistry of the Volcanic Rocks [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1442-1457.
[14] Xu Zhongjie, Lan Yizhi, Cheng Rihui, Li Shuanglin. Carbonate Geochemical Record of Sea-Level Change of Lunshan Formation in Lower Ordovician in Jurong Area [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1458-1470.
[15] Zhao Yuandong, Che Jiying, Wu Datian, Xu Fengming, Zhao Jun, Li Shichao. Early-Middle Jurassic TTG Granites in Northwest of Lesser Xing'an Range: Its Geochronology, Geochemical Characteristics and Tectonic Significance [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1119-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!