Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (4): 1247-1254.doi: 10.13278/j.cnki.jjuese.201704205
Previous Articles Next Articles
Lou Junfang1,2, Tang Jie1, Song Yang1
CLC Number:
[1] Hajime K, Naoki S, Fu Qian, et al. Bio-Electro-chemical Property and Phylogenetic Diversity of Microbial Communities Associated with Bioelectrodes of an Electromethanogenic Reactor[J]. Journal of Bioscience and Bioengineering, 2013,116:114-117. [2] Van Eerten-Jansen M C A A,Ter Heijne A, Buisman C J N,et al. Microbial Electrolysis Cells for Production of Methane from CO2: Long-Term Performance and Perspectives[J]. International Journal of Energy Research, 2012, 36 (6):809-819. [3] Harnisch F, Schröder U. From MFC to MXC: Chemical and Biological Cathodes and Their Potential for Microbial Bioelectrochemical Systems[J]. Chemical Society Reviews, 2010, 39: 4433-4448. [4] Xafenias N, Mapelli V. Performance and Bacterial Enrichment of Bioelectrochemical Systems During Methane and Acetate Production[J]. International Journal of Hydrogen Energy,2014, 39(36):21864-21875. [5] 徐恒,汪翠萍,王凯军. 不同碳源对产甲烷生物阴极性能的影响[J].高等学校化学学报, 2015, 36(2): 344-348. Xu Heng, Wang Cuiping,Wang Kaijun. Effect of Carbon Sources on the Performance of Methane-Producing Biocathodes[J]. Chemical Journal of Chinese Universities, 2015, 36(2): 344-348. [6] Villano M, Ralo C, Zeppilli M, et al. Influence of the Set Anode Potential on the Performance and Internal Energy Losses of a Methane-Producing Microbial Electrolysis Cell[J]. Bioelectrochemistry, 2016, 107: 1-6. [7] 滕文凯, 刘广立, 骆海萍,等. 基质COD 浓度对单室微生物电解池产甲烷的影响[J]. 环境科学, 2015,36(3):1021-1026. Teng Wenkai,Liu Guangli,Luo Haiping,et al. Influence of Substrate COD on Methane Production in Single-Chambered Microbial Electrolysis Cell[J]. Environmental Science,2015,36(3): 1021-1026. [8] Jafary T, Daud W R W, Ghasemi M, et al. Biocathode in Microbial Electrolysis Cell: Present Status and Future Prospects[J].Renewable and Sustainable Energy Reviews,2015,47:23-33. [9] Xu Heng, Wang Kaijun, Holmes D E. Bioelectro-chemical Removal of Carbon Dioxide (CO2): An Innovative Method for Biogas Upgrading[J]. Bioresource Technology, 2014, 173: 392-398. [10] Borole A P, Reguera G, Ringeisen B, et al. Electroactive Biofilms: Current Status and Future Research Needs[J]. Energy & Environmental Science, 2011, 4:4813-4834. [11] Manuel M F, Neburchilov V, Wang Heming, et al. Hydrogen Production in a Microbial Electrolysis Cell with Nickel-Based Gas Diffusion Cathodes[J]. Journal of Power Sources, 2010, 195:5514-5519. [12] Mark W L, Cheryl D C, Ramon G L. Inactivation of Biofilm Bacteria[J]. Applied and Environmental Microbiology,1988,54:2492-2499. [13] Babauta J, Renslow R, Lewandowski Z,et al. Electrochemically Active Biofilms: Facts and Fiction: A Review[J]. Biofouling, 2012,28(8):789-812. [14] Fu Qian, Yoshihiro K, Naoya F, et al. Bio-Electrochemical Analyses of the Development of a Thermophilic Biocathode Catalyzing Electromethanogenesis[J]. Environmental Science and Technology, 2015,49:1225-1232. [15] Lovley D R. Powering Microbes with Electricity: Direct Electron Transfer from Electrodes to Microbes[J]. Environmental Microbiology Reports, 2011, 3:27-35. [16] Lee H S, Prathap P, Andrew K M, et al. Evaluation of Energy-Conversion Efficiencies in Microbial Fuel Cells (MFCs) Utilizing Fermentable and Non-Fermentable Substrates[J]. Water Research, 2008, 42(6/7): 1501-1510. [17] Torres C I, Marcus A K, Rittmann B E. Proton Transport Inside the Biofilm Limits Electrical Current Generation by Anode-Respiring Bacteria[J]. Biotechnology and Bioengineering, 2008, 100:872-881. [18] Liu Hong, Grot S, Logan, B E. Electrochemically Assisted Microbial Production of Hydrogen from Acetate[J]. Environmental Science and Technology, 2005, 39:4317-4320. [19] Walczak M M, Dryer D A, Jacobson D D, et al. pH-Dependent Redox Couple: Illustrating the Nernst Equation Using Cyclic Voltammetry[J]. Environmental Science and Technology, 1997, 74:1195-1197. [20] Jeremiasse A W, Hamelers H V M, Buisman C J N. Microbial Electrolysis Cell with a Microbial Biocathode[J]. Bioelectrochemistry, 2010, 78(1): 39-43. [21] Logan B E, Call D, Cheng Shaoan, et al. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter[J]. Environmental Science and Technology,2008, 42(23): 8630-8640. [22] Vrieze J D, Hennebel T, Boon N, et al. Methano-sarcina:The Rediscovered Methanogen for Heavy Duty Biomethanation[J]. Bioresource Technology, 2012,112:1-9. [23] Chen Ye, Cheng J J, Creamer K S. Inhibition of Anaerobic Digestion Process: A Review[J]. Bioresource Technology, 2008, 99:4044-4064. [24] Rozendal R A, Hamelers H V M, Rabaey K, et al. Towards Practical Implementation of Bioelectrochemical Wastewater Treatment[J]. Trends in Biotechnology, 2008, 26:450-459. [25] Zhen Guangyin, Lu Xueqin, Kobayashi T, et al. Promoted Electromethanosynthesis in a Two-Chamber Microbial Electrolysis Cells (MECs) Containing a Hybrid Biocathode Covered with Graphite Felt (GF) [J]. Chemical Engineering Journal, 2016, 284:1146-1155. |
[1] | SONG Zhi-wei, CHENG Xiao-xia, QIAO Yan-yun, PAN Yu, LUO Ke-ji. Influence of Seed Sludge on the Reactivation of Aerobic Sludge Granular After Storage [J]. J4, 2011, 41(3): 873-878. |
[2] | PENG Ju-wei, KANG Chun-li, CUI Yu-bo, LIU Xian-chen, HAN Xiang-kui. Application on Wastewater Treatment of Produced Furfural by Free Water Surface Flow Constructed Wetland [J]. J4, 2010, 40(6): 1419-1424. |
[3] | LIU Peng, ZHANG Lan-ying, LIU Ying-ying, LIU Na, LIU Feng, LIU Hong, CUI Zhe, XU Guo-xin. Pharmaceutical Wastewater Treatment and Its Biological Phase in Combination with Biological Technology [J]. J4, 2010, 40(1): 169-175. |
[4] | Song Zhiwei, Wang Qiuxu, Ning Tingting, Ren Nanqi, Li Lixin. Influence of Microbial Flocculant Dosing Way on Performance of Aerobic Granules [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 247-254. |
|