Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (2): 611-620.doi: 10.13278/j.cnki.jjuese.20180016
Han Qidi1, Zhang Xiaotong2, Shen Wei1
CLC Number:
[1] 李航.统计学习方法[M].北京:清华大学出版社,2012. Li Hang.Statistical Learning Method[M].Beijing:Tsinghua University Press,2012. [2] 于代国,孙建孟,王焕增,等.测井识别岩性新方法:支持向量机方法[J].大庆石油地质与开发,2005,24(5):93-95. Yu Daiguo,Sun Jianmeng,Wang Huanzeng,et al.A New Method of Logging Recognition Lithology:Support Vector Machine Method[J].Daqing Petroleum Geology and Development,2005,24(5):93-95. [3] 周继宏,袁瑞.基于支持向量机的复杂碎屑岩储层岩性识别[J].石油天然气学报,2012,34(7):72-75. Zhou Jihong,Yuan Rui.Lithology Identification of Complex Clastic Rock Reservoirs Based on Support Vector Machine[J]. Journal of Oil and Gas Technolog,2012,34(7):72-75. [4] 张翔,肖小玲,严良俊,等.基于模糊支持向量机方法的岩性识别[J].石油天然气学报(江汉石油学院学报),2009,31(6):115-118. Zhang Xiang,Xiao Xiaoling,Yan Liangjun,et al.Lithology Identification Based on Fuzzy Support Vector Machine[J].Journal of Oil and Gas Technolog,2009,31(6):115-118. [5] 李洪奇,谭锋奇,许长福,等.基于决策树方法的砾岩油藏岩性识别[J].测井技术,2010,34(1):16-21. Li Hongqi,Tan Fengqi,Xu Changfu,et al.Lithology Identification of Conglomerate Reservoir Based on Decision Tree Method[J].Well Logging Technology,2010,34(1):16-21. [6] 石广仁.支持向量机在裂缝预测及含气性评价应用中的优越性[J].石油勘探与开发,2008,35(5):589-594. Shi Guangren.Superiorities of Support Vector Machine in Fracture Prediction and Gassinesse Valuation[J].Petroleum Exploration and Development,2008,35(5):589-594. [7] 桑吉夫·库尔卡尼,吉尔伯特·哈曼.统计学习理论基础[M].肖忠祥,闫效莺,段沛沛,等译.北京:机械工业出版社,2017. Kulkarni S,Harman G.An Elementary Introduction to Statistical Learining Theory[M].Translated by Xiao Zhongxiang,Yan Xiaoying,Duan Peipei,et al.Beijing:Machinery Industry Press,2017. [8] 王建国,董泽宇,张文兴,等.基于回归树的支持向量机规则提取及应用[J].计算机工程与应用,2017,53(6):236-240. Wang Jianguo,Dong Zeyu,Zhang Wenxing,et al.Rule Extraction of Support Vector Machine Based on Regression Tree and Application[J].Computer Engineering and Applications,2017,53(6):236-240. [9] Barakat N,Bradley A P.Rule Extraction from Support Vector Machines:A Review[J].Neurocomputing,2010,74(5):178-190. [10] 温小霓,蔡汝骏.分类与回归树及其应用研究[J].统计与决策,2007(23):14-16. Wen Xiaoni,Cai Rujun.Classification and Regression Tree and Its Application Research[J].Statistics and Decision,2007(23):14-16. [11] 谢益辉.基于R软件rpart包的分类与回归树应用[J].统计与信息论坛,2007,22(5):67-70. Xie Yihui.Classification and Regression Tree Application Based on R Software Rpart Package[J].Forum on Statistics and Information,2007,22(5):67-70. [12] 周志华.机器学习[M].北京:清华大学出版社,2016:1-415. Zhou Zhihua.Machine Learning[M].Beijing:Tsinghua University Press,2016:1-415. [13] 范淼,李超.Python机器学习及实践[M].北京:清华大学出版社,2016:1-180. Fan Miao,Li Chao.Python Machine Learning and Practice[M].Beijing:Tsinghua University Press,2016:1-180. [14] 张冰,郭智奇,徐聪,等.基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J].吉林大学学报(地球科学版),2018,48(4):1244-1252. Zhang Bing,Guo Zhiqi,Xu Cong,et al.Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model[J].Journal of Jilin University (Earth Science Edition),2018,48(4):1244-1252. [15] 杨震宇.基于机器学习的分类算法研究[J].科学中国人,2017,2:22-25. Yang Zhenyu.Research on Classification Algorithm Based on Machine Learning[J].Scientific Chinese,2017,2:22-25. [16] 丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. Ding Shifei,Qi Bingjuan,Tan Hongyan.An Overview on Theory and Algorithm of Support Vector Machines[J].Journal of University of Electronic Science and Technology of China,2011,40(1):2-10. [17] 冷强奎,李玉鑑.使用SVM和二叉树结构的分片线性分类器[J].中国科技论文,2015,10(2):164-168. Leng Qiangkui,Li Yujian.A Piecewise Linear Classifier Using SVM and two Forked Tree Structure[J].China Sciencepaper,2015,10(2):164-168. [18] 石广仁.支持向量机在多地质因素分析中的应用[J].石油学报,2008,29(2):195-198. Shi Guangren.Application of Support Vector Machine to Multi-Geological-Factor Analysis[J].Acta Petrolei Sinica,2008,29(2):195-198. [19] Janez D,Dale S.Statistical Comparisons of Classifiers over Multiple DataSets[J].Journal of Machine Learning Research,2006,7(1):1-30. [20] Zhang M,Zhou Z.A Review on Multi-Label Learning Algorithms[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(8):1819-1837. [21] Yoonkyung L,Yi L,Grace W.Multicategory Support Vector Machines:Theory and Application to the Classification of Microarray Data and Satellite Radiance Data[J].Journal of the American Statistical Association,2004,99:67-81. [22] Fan R E,Chang K W,Hsieh C J,et al.LIBLINEAR:A Library for Large Linear Classification[J].Journal of Machine Learning Research,2008,9:1871-1874. [23] Shwartz S S,Singer Y,Srebro N,et al.Pegasos:Primal Estimated Sub-Gradient Solver for SVM[J].Mathematical Programming,2011,127(1):3-30. [24] Bouchaffra D,Vitae A,Cheriet M.Machine Learning and Pattern Recognition Models in Change Detection[J].Pattern Recognition,2015,48(3):613-615. [25] Collins M,Schapire R E,Singer Y.Logistic Regression,Ada Boost and Bregman Distances[J].Machine Learning,2002,48(1):235-285. [26] Canu S,Smola A.Kernel Methods and the Exponential Family[J].Neurocomputing,2006,69(7):714-720. [27] Tsochantaridis I,Joachims T,Hofmann T,et al.Large Margin Methods for Structured and Interdependent Output Variables[J].Journal of Machine Learning Research,2005,1:1453-1484. [28] Chang C C,Lin C J.LIBSVM:A Library for Support Vector Machines[J/OL].ACM Transactions on Intelligent Systems and Technology,2011,2(3).http://dx.doi.org/10.1145/1961189.1961199. |
[1] | Xu Shouyu, Lu Yan, Wang Ya. Study on Flow Units of Turbidite Fan Low Permeability Reservoir Based on Support Vector Machine [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1330-1341. |
[2] | Wang Mingchang, Zhang Xinyue, Zhang Xuqing, Wang Fengyan, Niu Xuefeng, Wang Hong. GF-2 Image Classification Based on Extreme Learning Machine [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 373-378. |
[3] | Lu Wenxi, Guo Jiayuan, Dong Haibiao, Zhang Yu, Lin Lin. Evaluating Mine Geology Environmental Quality Using Improved SVM Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1511-1519. |
[4] | Yang Xuefeng, Wang Xuemei, Mao Donglei. Mapping Land Use and Land Cover Through MISR Multi-Angle Imagery in the Lower Tarim River [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 617-626. |
[5] | Zhou Linfei, Chen Qixin, Cheng Qian, Zhang Jing. Remote Sensing Classification Information Extraction Based on Rough Set Theory [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1246-1256. |
[6] | Mou Dan, Wang Zhuwen, Huang Yulong, Xu shi, Zhou Dapeng. Application of Least Squares Support Vector Machine to Lithology Identification: Taking Intermediate/Basaltic Rocks of Liaohe Basin as an Example [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 639-648. |
[7] | YANG Jia-jia, JIANG Qi-gang, ZHAO Jing, XU Yan, MENG Xiang-chong. Standard Mineral Quantitative Calculation Based on the Improved SVM and Hyperspectral Remote Sensing [J]. J4, 2012, 42(3): 864-871. |
[8] | NIU Rui-qing, PENG Ling, YE Run-qing, WU Xue-ling. Landslide Susceptibility Assessment Based on Rough Sets and Support Vector Machine [J]. J4, 2012, 42(2): 430-439. |
[9] | XU Chang-fu, LI Xiong-yan, TAN Feng-qi, YU Hong-yan, LI Hong-qi. Task-Driven Data Mining and Its Application of Identifying the Low Resistivity Oil Reservoir[ [J]. J4, 2012, 42(1): 39-46. |
[10] | WANG Li-hua, ZHOU Yun-xuan, TIAN Bo. Detecting Coral Reefs at Dongsha Atoll Using Landsat TM and ETM+Images [J]. J4, 2011, 41(5): 1630-1637. |
[11] | LI Xiu-zhen, KONG Ji-ming, WANG Cheng-hua. Application of Multi-Classification Support Vector Machine in the Identifying of Landslide Stability [J]. J4, 2010, 40(3): 631-637. |
[12] | HUANG Ying, ZHOU Yun-xuan, WU Wen, KUANG Run-yuan, LI Xing. Shanghai Urban Wetland Extraction and Classification with Remote Sensed Imageries Based on A Decision Tree Model [J]. J4, 2009, 39(6): 1156-1162. |
[13] | CHENG Bin, JIANG Qi-gang, ZHOU Yun-xuan,ZHAN Shao-bin. Decision Tree Based on ASTER Image Classification and Its Application [J]. J4, 2007, 37(1): 179-0184. |
[14] | XU Hong-min, YANG Tian-xing. Evaluation of Lake Water Quality Based on Classification Algorithms of Support Vector Machines [J]. J4, 2006, 36(04): 570-573. |
|