Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (4): 959-969.doi: 10.13278/j.cnki.jjuese.20180024

Previous Articles     Next Articles

Reservoir Characteristics and Main Controlling Factors of Tight Sandstone in Coal Measures in Zijinshan Area

Sun Zefei1,2, Shi Jianru1, Lian Bipeng2, Kang Zhishuai1, Shen Jian3, Yang Han1,2   

  1. 1. Shanxi Geology and Mineral Resources of Science and Technology Evaluation Center, Taiyuan 030024, China;
    2. Oil and Gas Resources Development and Management Department, Department of Natural Resources of Shanxi Province, Taiyuan 030024, China;
    3. Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process(China University of Mining & Technology), Ministry of Education, Xuzhou 221008, Jiangsu, China
  • Received:2018-05-16 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported byNational Science and Technology Major Project (2011ZX0503-01-02) and National Natural Science Foundation of China (U1361207)

Abstract: The Upper Paleozoic tight sandstone gas resources are rich in potential in Zijinshan area at the northeast margin of Ordos basin,and are one of the important blocks for unconventional natural gas exploration in China. The petrology, physical properties and gas-bearing characteristics of tight reservoirs were studied through analysis and test of casting thin sections, scanning electron microscope, experiments on porosity,permeability,and pressured-mercury testing,combined with drilling and logging data. The results show that lithic sandstone is the main reservoir rock type at medium degree of composition maturity and textural maturity with high content of quartz,lithic fragment,and low content of feldspar. The dissolved pore is the major type of reservoir space,and its main pore structure is mesoporous fine throat and microporous fine throat. The porosity of the major pores ranges from 2.00% to 12.00%, with an average of 6.96%,and the main permeability is 0.01×10-3 μm2-1.00×10-3 μm2, with an average of 0.36×10-3 μm2. The correlation of porosity and permeability is good because of the later dissolution. The average thickness of the gas reservoirs with gas saturation of 40.4% is 10.3 m, which accounts for 29% of the tight sandstone reservoirs. The reservoir development is mainly under the control of sedimentation, compaction and dissolution. The material basis and spatial distribution of reservoir formation are controlled by sedimentation. The strength of compaction is directly affected by rock composition in different sedimentary environments. The superimposed development characteristics of sandstone, mudstone, limestone,and coal seam provide a basis for dissolution. Compaction is the main factor that causes reservoir tightness. Dissolution is the decisive factor for the improvement of reservoir properties in the region. The thermal action and eruption of Zijinshan magma enhanced the dissolution.

Key words: tight sandstone, reservoir, main controlling factors, Taiyuan Formation, Shanxi Formation, Zijinshan, Ordos basin

CLC Number: 

  • P618.13
[1] Holditch S A. TightGas Sands[J]. Journal of Petroleum Technology, 2006, 58(6):86-93.
[2] Higgs K E, Zwingmann H, Reyes A G. Diagenesis,Porosity Evolution, and Petroleum Emplacement in Tight Gas Reservoirs, Taranaki Basin, New Zealand[J]. Journal of Sedimentary Research, 2007, 77(12):1003-1025.
[3] Smith T, Sayers C M, Liner C. Introduction to this Special Section:Tight Gas Sands[J]. Leading Edge, 2010, 29(12):1463-1463.
[4] 戴金星, 倪云燕, 吴小奇. 中国致密砂岩气及在勘探开发上的重要意义[J]. 石油勘探与开发, 2012, 39(3):257-264. Dai Jinxing, Ni Yunyan, Wu Xiaoqi. Tight Gas in China and Its Significance in Exploration and Exploitation[J]. Petroleum Exploration & Development, 2012, 39(3):257-264.
[5] 关德师. 中国非常规油气地质[M]. 北京:石油工业出版社, 1995. Guan Deshi. Unconventional Geology of China[M]. Beijing:Petroleum Industry Press, 1995.
[6] 李剑, 魏国齐, 谢增业, 等. 中国致密砂岩大气田成藏机理与主控因素:以鄂尔多斯盆地和四川盆地为例[J]. 石油学报, 2013, 34(增刊1):14-28. Li Jian, Wei Guoqi, Xie Zengye, et al. Accumulation Mechanism and Main Controlling Factors of Large Tight Sandstone Gas Fields in China:Cases Study on Ordos Basin and Sichuan Basin[J]. Acta Petrolei Sinica, 2013, 34(Sup.1):14-28.
[7] 邹才能, 陶士振, 张响响, 等. 中国低孔渗大气区地质特征、控制因素和成藏机制[J]. 中国科学:D辑:地球科学, 2009, 39(11):1607-1624. Zou Caineng, Tao Shizhen, Zhang Xiangxiang, et al. Geologic Characteristics, Controlling Factors and Hydrocarbon Accumulation Mechanisms of China's Large Gas Provinces of Low Porosity and Permeability[J]. Science China:Series D:Earth Science, 2009, 39(11):1607-1624.
[8] 张金亮, 常象春. 四川盆地上三叠统深盆气藏研究[J]. 石油学报, 2002, 23(3):29-33. Zhang Jinliang, Chang Xiangchun. Gas Trap in Deep Basin of the Upper Triassic in Sichuan Basin[J]. Acta Petrolei Sinica, 2002, 23(3):29-33.
[9] 蔡来星, 卢双舫, 肖国林, 等. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1):15-28. Cai Laixing, Lu Shuangfang, Xiao Guolin, et al. Controlling Action of Space-Time Coupling Relationship Between High-Quality Source Rocks and High-Quality Reservoirs:Contrasting Accumulation Conditions of Tight Oil in the Southern Songliao Basin with Tight Gas in the Northern Songliao Basin[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1):15-28.
[10] 赵靖舟, 付金华, 姚泾利, 等. 鄂尔多斯盆地准连续型致密砂岩大气田成藏模式[J]. 石油学报, 2012, 33(1):37-52. Zhao Jingzhou, Fu Jinhua, Yao Jingli, et al. Quasi-Continuous Accumulation Model of Large Tight Sandstone Gas Field in Ordos Basin[J]. Acta Petrolei Sinica, 2012, 33(1):37-52.
[11] 邹才能, 朱如凯, 吴松涛, 等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2):173-187. Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as an Instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.
[12] 刘鹏, 王伟锋, 孟蕾, 等. 鄂尔多斯盆地上古生界煤层气与致密气联合优选区评价[J]. 吉林大学学报(地球科学版), 2016, 46(3):692-701. Liu Peng, Wang Weifeng, Meng Lei, et al. Joint Optimization of Coal-Bed Methane and Tight Gas in the Upper Paleozoic of the Ordos Basin[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3):692-701.
[13] 张水昌, 米敬奎, 刘柳红, 等. 中国致密砂岩煤成气藏地质特征及成藏过程:以鄂尔多斯盆地上古生界与四川盆地须家河组气藏为例[J]. 石油勘探与开发, 2009, 36(3):320-330. Zhang Shuichang, Mi Jingkui, Liu Liuhong, et al. Geological Features and Formation of Coal-Formed Tight Sandstone Gas Pools in China:Cases from Upper Paleozoic Gas Pools, Ordos Basin and Xujiahe Formation Gas Pools, Sichuan Basin[J]. Petroleum Exploration & Development, 2009, 36(3):320-330.
[14] 于兴河, 李顺利, 杨志浩. 致密砂岩气储层的沉积-成岩成因机理探讨与热点问题[J]. 岩性油气藏, 2015, 27(1):1-13. Yu Xinghe, Li Shunli, Yang Zhihao. Discussion on Deposition-Diagenesis Genetic Mechanism and Hot Issues of Tight Sandstone Gas Reservoir[J]. Lithologic Reservoirs, 2015, 27(1):1-13.
[15] 李建忠, 郭彬程, 郑民, 等. 中国致密砂岩气主要类型、地质特征与资源潜力[J]. 天然气地球科学, 2012, 23(4):607-615. Li Jianzhong, Guo Bincheng, Zheng Min, et al. Main Types, Geological Features and Resource Potential of Tight Sandstone Gas in China[J]. Natural Gas Geoscience, 2012, 23(4):607-615.
[16] 樊爱萍, 赵娟, 杨仁超, 等. 苏里格气田东二区山1段、盒8段储层孔隙结构特征[J]. 天然气地球科学, 2011, 22(3):482-487. Fan Aiping, Zhao Juan, Yang Renchao, et al. Pore Structure of Reservoir Rocks in Shan 1 and He 8 Members, the EastⅡ Block of Sulige Gas Field[J]. Natural Gas Geoscience, 2011, 22(3):482-487.
[17] 卢蜀秀, 阎荣辉, 袁晓明. 苏里格气田南部地区盒8段气藏储层特征及主控因素研究[J]. 天然气勘探与开发, 2012, 35(3):1-4. Lu Shuxiu, Yan Ronghui, Yuan Xiaoming. Reservoir Characteristics and Main Controlling Factors of He 8 Member, Southern Sulige Gasfield[J].Natural Gas Exploration & Development, 2012, 35(3):1-4.
[18] 朱如凯, 邹才能, 张鼐, 等. 致密砂岩气藏储层成岩流体演化与致密成因机理:以四川盆地上三叠统须家河组为例[J]. 中国科学:D辑:地球科学, 2009, 39(3):327-339. Zhu Rukai, Zou Caineng, Zhang Nai, et al. Diagenetic Fluids Evolution and Genetic Mechanism of Tight Sandstone Gas Reservoirs in Upper Triassic Xujiahe Formation in Sichuan Basin, China[J]. Science China:Series D:Earth Science, 2009, 39(3):327-339.
[19] 杨华, 刘新社, 闫小雄. 鄂尔多斯盆地晚古生代以来构造-沉积演化与致密砂岩气成藏[J]. 地学前缘, 2015, 22(3):174-183. Yang Hua, Liu Xinshe, Yan Xiaoxiong. The Relationship Between Tectonic-Sedimentary Evolution and Tight Sandstone Gas Reservoir Since the Late Paleozoic in Ordos Basin[J]. Earth Science Frontiers, 2015, 22(3):174-183.
[20] 林春明, 张霞, 周健,等. 鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征[J]. 地球科学进展, 2011, 26(2):212-223. Lin Chunming, Zhang Xia, Zhou Jian, et al. Diagenesis Characteristics of the Reservoir Sandstones in Lower Shihezi Formation from Daniudi Gas Field,Ordos Basin[J]. Advances in Earth Science, 2011, 26(2):212-223.
[21] 林小兵, 刘莉萍, 田景春, 等. 川西坳陷中部须家河组五段致密砂岩储层特征及主控因素[J]. 石油与天然气地质, 2014, 35(2):224-230. Lin Xiaobing, Liu Liping, Tian Jingchun, et al. Characteristics and Controlling Factors of Tight Sandstone Reservoirs in the 5th Member of Xujiahe Formation in the Central of Western Sichuan Depression[J]. Oil & Gas Geology, 2014, 35(2):224-230.
[22] 长庆油田石油地质志编写组. 中国石油地质志:十二[M]. 北京:石油工业出版社, 1992:68. Editorial Committee of Petroleum Geology of Changqing Oil Field. Petroleum Geology of China:Volume 12[M]. Beijing:Petroleum Industry Press, 1992:68.
[23] 王琳琳, 姜波, 屈争辉. 鄂尔多斯盆地东缘煤层含气量的构造控制作用[J]. 煤田地质与勘探, 2013, 41(1):14-19. Wang Linlin, Jiang Bo, Qu Zhenghui. Structural Control on Gas Content Distribution in Eastern Margin of Ordos Basin[J]. Coal Geology & Exploration, 2013, 41(1):14-19.
[24] 接铭训. 鄂尔多斯盆地东缘煤层气勘探开发前景[J]. 天然气工业, 2010, 30(6):1-6. Jie Mingxun.Prospects in Coalbed Methane Gas Exploration and Production in the Eastern Ordos Basin[J]. Natural Gas Industry, 2010, 30(6):1-6.
[1] Wang Yuxiang, Gu Yi, Fu Qiang, Wang Bin, Wan Yanglu, Li Yingtao. Characteristics and Genesis of Deep Carbonate Reservoirs in Shunbei Area [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 932-946.
[2] Wang Lu, Yang Shenglai, Peng Xian, Liu Yicheng, Xu Wei, Deng Hui. Pore Structure Characteristics and Storage-Seepage Capability of Multi-Type Reservoirs in Fracture-Cavity Carbonate Gas Reservoirs: A Case Study of Deng-4 Member in Gaoshiti-Moxi Area, Sichuan Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 947-958.
[3] Shan Xiang, Guo Huajun, Guo Xuguang, Zou Zhiwen, Li Yazhe, Wang Libao. Influencing Factors and Quantitative Assessment of Pore Structure in Low Permeability Reservoir: A Case Study of 2nd Member of Permian Upper Urho Formation in Jinlong 2 Area, Junggar Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 637-649.
[4] Shan Xuanlong, Cai Zhuang, Hao Guoli, Zou Xintong, Zhao Rongsheng. Estimation of Thermal Storage Temperature of Geothermal System in Changbai Mountain by Geothermometers [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 662-672.
[5] Zhang Bin, Gu Guozhong, Shan Junfeng, Wang Pujun, Guo Qiang, Xu Chenchen, Yang Fan, Chen Xingzhou. Lithology,Lithofacies Chracteristics and Reservoir Control Factors of Cenozoic Igneous Rocks in Eastern Sag of Liaohe Depression [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 279-293.
[6] Li Huan, Wang Qingbin, Pang Xiaojun, Feng Chong, Liu Xiaojian. Generation of High Quality Near Source Glutenite Reservoir of 2nd Member of Shahejie Formation in Lüda-29 Structure, Liaodong Sag, Bohai Bay Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 294-309.
[7] Yang Bing, Xu Tianfu, Li Fengyu, Tian Hailong, Yang Leilei. Numerical Simulation on Impact of Water-Rock Interaction on Reservoir Permeability: A Case Study of Upper Paleozoic Sandstone Reservoirs in Northeastern Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 526-538.
[8] Cai Laixing, Xiao Guolin, Guo Xingwei, Wang Jiao, Wu Zhiqiang, Li Baogang. Characteristics of Lower Silurian Hydrocarbon Source Rocks and Their Main Controlling Factors in the South Yellow Sea Basin Based on Land-Ocean Comparison in the Lower Yangtze Region [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 39-52.
[9] Yu Cuiling, Li Baogang. Main Factors Controlling Planar Enrichment of Lithologic Reservoirs in Niuzhuang Sub-Sag, Dongying Depression, Bohai Bay Basin [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 240-247.
[10] Zhu Yixiu, Shan Junfeng, Wang Huan, Cai Guogang. Petrological Characteristics of Archean Metamorphic Reservoir in Central Area of Damintun Depression, Liaohe [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1304-1315.
[11] Xu Shouyu, Lu Yan, Wang Ya. Study on Flow Units of Turbidite Fan Low Permeability Reservoir Based on Support Vector Machine [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1330-1341.
[12] Qu Xuejiao, Li Jiqiang, Zhang Ji, Zhao Zhongjun, Qi Zhilin, Luo Chao. Quantitative Characterization of Reservoir Architecture Units of Braided River Tight Sandstone Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1342-1352.
[13] Wang Yuxia, Zhou Lifa, Jiao Zunsheng, Shang Qinghua, Huang Shengwang. Sensitivity Evaluation of Tight Sandstone Reservoir in Yanchang Formation in Shanbei Area, Ordos Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 981-990.
[14] Lin Miruo, Cao Yingchang, Xi Kelai, Wang Jian, Chen Hong, Wu Junjun. Characteristics and Controlling Factors of Permian Reservoirs in Eastern Slope of Fukang Sag [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 991-1007.
[15] Zhao Qianping, Zhang Lixia, Yin Jintao, Yu Yuxi, Jiang Chengfu, Wang Hui, Gao Chao. Pore Structure and Physical Characteristics of Shale Reservoir Interbedded with Silty Layers: An Example from Zhangjiatan Lacustrine Shale [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1018-1029.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!