Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (5): 1457-1465.doi: 10.13278/j.cnki.jjuese.20180226

Previous Articles     Next Articles

Analysis on Resistivity Characteristics and Resistivity Model Building of Marine Soil with High Clay Content

Zhu Guangxiang1, Guo Xiujun1,2, Yu Le1, Sun Xiang1, Jia Yonggang1,2   

  1. 1. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, Shandong, China;
    2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, Shandong, China
  • Received:2018-08-27 Published:2019-10-10
  • Supported by:
    Supported by National Key R & D Program of China (2017YFC0307701) and National Natural Science Foundation of China (41772307, 41427803)

Abstract: The clay adsorption cations in pore fluid can form a double electric layer, which affects the soil conductivity, and together with pore fluid and soil structure make the conductive structure complicated. To address this issue, the resistivity values and other physical properties of soil from the Yellow River Delta and the northern South China Sea slope were tested. The results show that the effects of clay content on the resistivity of marine soil with different consolidation degrees are different. The resistivity characteristics of marine soil can be divided into 3 stages. The variation of resistivity of normally consolidated marine soil can be expressed by simplified binary model formula. When the porosity was less than 50%, the resistivity was power function reduction, when the porosity was between 50% and 60%, the resistivity decreased slowly with the decrease of porosity, when the porosity of unconsolidated marine soil was higher than 60%, the resistivity decreased linearly with the porosity,which can be described by the linear model formula. The resistivity testing technology has a good ability to reflect the changes of the normally consolidated soil structures (porosity) with high clay content, and the detection sensitivity is up to 25 Ω·m; however, it is difficult to reflect the changes of the unconsolidated marine soil.

Key words: marine clay, resistivity characteristics, resistivity model, influencing factors

CLC Number: 

  • P631.3
[1] 郭秀军, 刘涛, 贾永刚, 等. 土的工程力学性质与其电阻率关系实验研究[J]. 地球物理学进展, 2003, 18(1):151-155. Guo Xiujun, Liu Tao, Jia Yonggang, et al. The Study of the Relationship Between Engineering Mechanical Properties and Resistivity of Soils[J]. Progress in Geophysics, 2003, 18(1):151-155.
[2] 郭秀军, 张志阔, 贾永刚, 等. 黄河口饱和粉土的电性特征及其工程地质应用[J]. 岩土力学, 2007, 28(3):593-598. Guo Xiujun, Zhang Zhikuo, Jia Yonggang, et al. Electrical Resistivity Feature of Saturated Silty Soil in Yellow River Estuarine Area and Its Engineering Geology Application[J]. Rock and Soil Mechanics, 2007, 28(3):593-598.
[3] 刘晓磊, 单红仙, 贾永刚,等. 电阻率法监测黄河口海床沉积物固结过程现场试验研究[J]. 海洋与湖沼, 2012, 43(2):224-229. Liu Xiaolei, Shan Hongxian, Jia Yonggang, et al. In-situ Monitoring of Seabed Sediments Consolidation Progress in Yellow River Estuary by Electrical Resistivity Method[J]. Oceanologia et Limnologia Sinica, 2012, 43(2):224-229.
[4] Fukue M, Minato T, Horibe H, et al. The Microstructure of Clay Given by Resistivity Measurements[J]. Engineering Geology, 1999, 54(1/2):43-53.
[5] Jinguuji M, Toprak S, Kunimatsu S. Visualization Technique for Liquefaction Process in Chamber Experiments by Using Electrical Resistivity Monitoring[J]. Soil Dynamics & Earthquake Engineering, 2007, 27(3):191-199.
[6] Fukue M, Minato T, Matsumoto M, et al. Use of a Resistivity Cone for Detecting Contaminated Soil Layers[J]. Engineering Geology, 2001, 60(1):361-369.
[7] 孙永福, 孙惠凤, 董立峰. 海底土的电阻率特征及其腐蚀性评价[J]. 海岸工程, 2005, 24(2):48-53. Sun Yongfu, Sun Huifeng. Dong Lifeng. Seabed Sediment Resistivity Characteristics and Its Corrosivity Assessment[J]. Coastal Engineering, 2005, 24(2):48-53.
[8] 蔡国军, 张涛, 刘松玉,等. 江苏海相黏土电阻率与岩土特性参数间相关性研究[J]. 岩土工程学报, 2013, 35(8):1470-1477. Cai Guojun, Zhang Tao, Liu Songyu, et al. Analysis of Formation Characteristics of Marine Clay Based on Resistivity Cone Penetration Test (RCPT)[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8):1470-1477.
[9] 李瑛, 龚晓南, 郭彪, 等. 电渗软黏土电导率特性及其导电机制研究[J]. 岩石力学与工程学报, 2010, 29(增刊2):4027-4032. Li Ying,Gong Xiaonan,Guo Biao,et al. Research on Conductivity Characteristics of Soft Clay During Electroosmosis and Its Conductivity Mechanism[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Sup. 2):4027-4032.
[10] 陈琼. 黏土吸附结合水动力学模型及机理研究[D]. 武汉:中国地质大学, 2013. Chen Qiong. A Dissertation Submitted to China University of Geosciences for the Doctor Degree of Philosophy[D]. Wuhan:China University of Geosciences, 2013.
[11] Waxman M H, Smits L J M. Electrical Conductivities in Oil-Bearing Shaly Sands[J]. Society of Petroleum Engineers Journal, 2003, 8(8):107-122.
[12] Mitchell J K. Fundamentals of Soil Behavior[M]. New York:Wiley & Sons, 1993.
[13] 宋延杰, 唐晓敏, 张传英. 三种混合泥质砂岩有效介质通用电阻率模型比较[J]. 吉林大学学报(地球科学版), 2008, 38(5):879-886. Song Yanjie, Tang Xiaomin, Zhang Chuanying. Comparison of Three Generalized Effective Medium Resistivity Models in Laminated and Dispersed Shaly Sands[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(5):879-886.
[14] 宋延杰, 李晓娇, 唐晓敏, 等. 基于连通导电理论和H方程的骨架导电纯岩石电阻率模型[J]. 中国石油大学学报(自然科学版), 2014, 38(5):66-74. Song Yanjie, Li Xiaojiao, Tang Xiaomin, et al. Matrix-Conducting Resistivity Model for Clean Sands Based on Connectivity Conductance Theory and HB Equation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2014, 38(5):66-74.
[15] 冯秀丽, 林霖, 庄振业, 等. 现代黄河水下三角洲全新世以来土层岩土工程参数与沉积环境之间的关系[J]. 海岸工程, 1999, 18(4):1-7. Feng Xiuli, Lin Lin, Zhuang Zhenye, et al. The Relationship Between Geotechnical Parameters and Sedimentary Environment of Soil Layers Since Holocene in Modern Huanghe Subaqueous Delta[J]. Coastal Engineering, 1999, 18(4):1-7.
[16] 李亮, 陈忠, 刘建国,等. 南海北部表层沉积物类型及沉积环境区划[J]. 热带海洋学报, 2014, 33(1):54-61. Li Liang, Chen Zhong, Liu Jianguo, et al. Distribution of Surface Sediment Types and Sedimentary Environment Divisions in the Northern South China Sea[J]. Jounrnal of Trppical Oceanography, 2014, 33(1):54-61.
[17] 朱超祁, 贾永刚, 张民生,等. 南海北部陆坡表层沉积物强度特征研究[J]. 工程地质学报, 2016, 24(5):863-870. Zhu Chaoqi, Jia Yonggang, Zhang Minsheng, et al. Surface Sediment Strength in Bed-Slope of Northern South China Sea[J]. Journal of Engineering Geology, 2016, 24(5):863-870.
[18] 栾锡武, 孙钿奇, 彭学超. 南海北部陆架南北卫浅滩的成因及油气地质意义[J]. 地质学报, 2012, 86(4):626-640. Luan Xiwu, Sun Dianqi, Peng Xuechao. Genesis of the Nanbeiwei Shoal on the Shelf of the Northern South China Sea and Its Petroliferous Significance[J]. Acta Geologica Sinica, 2012, 86(4):626-640.
[19] 刘文忠, 施行觉, 徐果明. 饱油、饱水岩石电阻率的测试和研究[J]. 地球物理学报, 1995,38(A01):316. Liu Wenzhong, Shi Xingjue, Xu Guoming. Study and Measurement on Resistivity of Oil or Water Saturated[J]. Chinese Journal of Geophysics, 1995,38(A01):316.
[20] 查甫生, 刘松玉, 杜延军. 非饱和黏性土电阻率结构模型研究[J]. 工程勘察, 2006(7):1-4. Zha Fusheng, Liu Songyu, Du Yanjun. Study on Resistivity Structure Model of Unsaturated Cohesive Soil[J]. Geotechnical Investigation & Surveying, 2006(7):1-4.
[21] Bruggeman D A G. Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen:Ⅲ:Die Elastischen Konstanten der Quasiisotropen Mischkörper aus Isotropen Substanzen[J]. Annalen Der Physik, 2010, 417(7):645-672.
[1] Zhan Gaofeng, Zhu Fu, Dong Weizhi, Wang Jing. Influencing Factors of Low Embankment Soil Subgrade Strength in Seasonally Frozen Region [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 869-875.
[2] SONG Yan-jie,TANG Xiao-min,ZHANG Chuan-ying. Comparison of Three Generalized Effective Medium Resistivity Models in Laminated and Dispersed Shaly Sands [J]. J4, 2008, 38(5): 879-0886.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!