Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (6): 1770-1782.doi: 10.13278/j.cnki.jjuese.20200028

Previous Articles     Next Articles

Discrete Element Simulation of Toppling Mechanism and Influencing Factors of Anti-Dip Layered Rock Slope

Huang Da1,2,3, Ma Hao2, Shi Lin4   

  1. 1. School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China;
    2. School of Civil Engineering, Chongqing University, Chongqing 400044, China;
    3. College of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China;
    4. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China
  • Received:2020-02-10 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Natural Science Foundation of China (41672300,41972297)

Abstract: In order to further study the mechanism and influcing factors of the toppling of layered anti-dip slopes, the discrete element simulation based on centrifugal model test was adopted. The formation of rupture surface was realized by presetting random cracks in the rock layers. The simulation results are in good agreement with the physical test. Slope deformation can be divided into three stages:Initial creep, steady-state deformation, and instability failure. The results show that:The rupture surface is straight-line after the failure load (Gf) is reached, and the occurrence is controlled by the dip angle of the rock layer; The Gf value is related to the power function of the slope angle; The failure of the anaclinal slope needs to satisfy the initial conditions, and the deformation is closely related to the bending moment of the rock layer, when the dip angle is 70°-80° and the slope angle is larger than 60°, it is the most vulnerable state. There are three typical failure modes:Toppling-rupture-block detachment type, toppling-bend-rupture type, and toppling-reversal type, which are controlled by the combination of dip and slope angle. The orthogonal simulations on material parameters show that the sensitivity of each parameter to Gf from large to small is density, friction angle of beddings, layer thickness, density ratio, and cohesion of beddings; The value of friction angle of beddings can affect the occurrence of the rupture surface, thus controlling the size of the deformation area, while other parameters only affect the value of Gf.

Key words: centrifugal model test, discrete element method, anaclinal slope, toppling deformation

CLC Number: 

  • P59
[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454. Huang Runqiu. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):433-454.
[2] Liu M, Liu F Z, Huang R Q, et al. Deep-Seated Large-Scale Toppling Failure in Metamorphic Rocks:A Case Study of the Erguxi Slope in Southwest China[J]. Journal of Mountain Science, 2016,13(12):2094-2110.
[3] Lin P, Liu X L, Hu S Y, et al. Large Deformation Analysis of a High Steep Slope Relating to the Laxiwa Reservoir, China[J]. Rock Mechanics and Rock Engineering, 2016, 49:2253-2276.
[4] 黄润秋, 李渝生, 严明. 斜坡倾倒变形的工程地质分析[J].工程地质学报, 2017, 25(5):1165-1181. Huang Runqiu, Li Yusheng, Yan Ming. The Implication and Evaluation of Toppling Failure in Engineering Geology Practice[J]. Journal of Engineering Geology, 2017, 25(5):1165-1181.
[5] 包承纲. 我国岩土离心模拟技术的应用与发展[J]. 长江科学院院报, 2013, 30(11):55-66,71. Bao Chenggang. Application and Development of Centrifugal Modeling Technology for Geotechnical Engineering in China[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(11):55-66,71.
[6] Adhikary D P, Dyskin A V, Jewell R J, et al. A Study of the Mechanism of Flexural Toppling Failure of Rock Slopes[J]. Rock Mechanics and Rock Engineering, 1997, 30(2):75-93.
[7] 汪小刚, 张建红, 赵毓芝, 等. 用离心模型研究岩石边坡的倾倒破坏[J]. 岩土工程学报,1996,18(5):14-21. Wang Xiaogang, Zhang Jianhong, Zhao Yuzhi, et al. Investigations on Mechanism of Slope Toppling Failure by Centrifuge Model Testing[J]. Chinese Journal of Geotechnical Engineering, 1996,18(5):14-21.
[8] 吴昊, 赵维, 年廷凯, 等. 反倾层状岩质边坡倾倒破坏的离心模型试验研究[J]. 水利学报, 2018, 49(2):223-231. Wu Hao, Zhao Wei, Nian Tingkai, et al. Study on the Anti-Dip Layered Rock Slope Toppling Failure Based on Centrifuge Model Test[J]. Journal of Hydraulic Engineering, 2018, 49(2):223-231.
[9] 黄达, 马昊, 孟秋杰, 等. 软硬互层岩质反倾边坡弯曲倾倒离心模型试验与数值模拟研究[J]. 岩土工程学报, 2020, 42(7):1286-1295. Huang Da, Ma Hao, Meng Qiujie, et al. Centrifugal Model Test and Numerical Simulation for Anaclinal Rock Slopes with Soft-Hard Interbedded Structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7):1286-1295.
[10] Leandro R A, Iván G, Roberto M. Analysisof a Complex Toppling-Circular Slope Failure[J]. Engineering Geology, 2010, 114(1):93-104.
[11] 马昊,黄达,石林.基于断距-层厚特征统计的反倾边坡S型破坏演化数值模拟[J].工程地质学报, 2020, 28(6):1160-117. Ma Hao, Huang Da, Shi Lin. Numerical Simulationof S-Shaped Failure Evolution of Anti-Dip Slope Based on Statistics of Broken Length and Layer Thickness[J]. Journal of Engineering Geology, 2020, 28(6):1160-1171.
[12] 孙东亚, 彭一江, 王兴珍. DDA数值方法在岩质边坡倾倒破坏分析中的应用[J]. 岩石力学与工程学报, 2002, 21(1):39-42. Sun Dongya, Peng Yijiang, Wang Xingzhen. Application of DDA Method in Stability Analysis of Topple Rock Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1):39-42.
[13] 程东幸, 刘大安, 丁恩保, 等. 层状反倾岩质边坡影响因素及反倾条件分析[J]. 岩土工程学报, 2005, 27(11):1362-1366. Cheng Dongxing, Liu Daan, Ding Enbao, et al. Analysis on Influential Factors and Toppling Conditions of Toppling Rock Slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11):1362-1366.
[14] 蔡跃, 三谷泰浩, 江琦哲郎. 反倾层状岩体边坡稳定性的数值分析[J]. 岩石力学与工程学报, 2008,27(12):2517-2522. Cai Yue, Mitani Yasuhiro, Esaki Tetsuro. Numerical Analysis of Stability for an Antidip Stratified Rock Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27(12):2517-2522.
[15] 李明霞, 董联杰. 层状反倾边坡变形特征及影响因素分析[J]. 计算力学学报, 2015,32(6):831-837. Li Mingxia, Dong Lianjie. Analysis on Influential Factors and Deformation Characteristics of Toppling Slope[J]. Chinese Journal of Computational Mechanics, 2015,32(6):831-837.
[16] Adhikary D P, Dyskin A V. Modelling of Progressive and Instantaneous Failures of Foliated Rock Slopes[J]. Rock Mechanics and Rock Engineering, 2007, 40(4):349-362.
[17] Itasca Consulting Group Inc. UDEC (Universal Distinct Element Code), Version 6.0[Z]. Minneapolis:Itasca, 2014.
[18] Diederichs M S, Kaiser P K. Stability of Large Excavation in Laminated Hard Rock Masses:The Voussoir Analogue Revisited[J]. International Journal of Rock Mechanics and Mining Sciences. 1999, 36(1):97-117.
[19] Zheng Y, Chen C X, Liu T T, et al. Study on the Mechanisms of Flexural Toppling Failure in Anti-Inclined Rock Slopes Using Numerical and Limit Equilibrium Models[J]. Engineering Geology, 2018,237:116-128.
[20] Cho N, Martin C D, Sego D C. A Clumped Particle Model for Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7):997-1010.
[21] 赵华, 李文龙, 卫俊杰, 等. 反倾边坡倾倒变形演化过程的模型试验研究[J]. 工程地质学报, 2018, 26(3):749-757. Zhao Hua, Li Wenlong, Wei Junjie, et al. Model Test Study on Toppling Deformation Evolution Process of Counter-Tilt Slope[J]. Journal of Engineering Geology, 2018, 26(3):749-757.
[22] 刘毅, 赵斌滨, 殷坤龙,等.基于正交设计的麻柳林滑坡稳定性敏感分析[J]. 地球科学, 2019, 44(2):677-684. Liu Yi, Zhao Binbin, Yin Kunlong, et al. Sensitivity Analysis of Maliulin Landslide Stability Based on Orthogonal Design[J]. Earth Science,2019, 44(2):677-684.
[23] 倪恒, 刘佑荣, 龙治国. 正交设计在滑坡敏感性分析中的应用[J]. 岩石力学与工程学报, 2002, 21(7):989-992. Ni Heng, Liu Yourong, Long Zhiguo. Applications of Orthogonal Design to Sensitivity Analysis of Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7):989-992.
[24] 游昆骏. 澜沧江苗尾水电站右坝肩边坡倾倒岩体开挖变形晌应及稳定性研究[D]. 成都:成都理工大学, 2014. You Kunjun. Study on Deformation Response and Stability of Toppling Deformation Rock by Excavation at Right Bank Abutment of Miaowei Hydropower Station on Lancang River[D]. Chengdu:Chengdu University of Technology, 2014.
[25] 赵永辉. 澜沧江古水水电站争岗巨型滑坡形成机理及演化过程研究[D]. 成都:成都理工大学, 2016. Zhao Yonghui. Research on the Formation and Evolution Mechanism of Zhenggang Giant Landslide of Gushui Hydropower Station on Lancang River[D]. Chengdu:Chengdu University of Technology, 2016.
[26] 贺宇航. 澜沧江苗尾水电站坝肩倾倒岩体开挖变形响应研究[D].成都:成都理工大学, 2015. He Yuhang. Study on Deformation Response of Toppling Deformation Rock by Excavation at Miaowei Hydropower Station on Lancang River[D]. Chengdu:Chengdu University of Technology, 2015.
[27] 张御阳, 裴向军, 唐皓, 等. 反倾岩坡倾倒变形结构面影响效应研究[J]. 工程地质学报, 2018, 26(4):844-851. Zhang Yuyang, Pei Xiangjun, Tang Hao, et al. Experimental Tests for Impact of Structural Surfaces to Toppling Deformation in Anti-Dipped Rock Slopes[J]. Journal of Engineering Geology, 2018, 26(4):844-851.
[28] 王梓龙,裴向军,张御阳,等. 松动岩体工程特性研究:以雅砻江楞古水电站松动岩体为例[J].吉林大学学报(地球科学版), 2019, 49(5):1376-1388. Wang Zilong, Pei Xiangjun, Zhang Yuyang, et al. Engineering Characteristics of Loose Rock Mass:Taking Loose Rock Mass of Lenggu Hydropower Station in Yalong River as an Example[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5):1376-1388.
[29] 白永健,王运生,葛华,等. 金沙江深切河谷百胜滑坡演化过程及成因机制[J].吉林大学学报(地球科学版),2019,49(6):1680-1688. Bai Yongjian,Wang Yunsheng,Ge Hua,et al. Formation Evolution and Genetic Mechanism of Baisheng Landslide in the Deep-Incised Valley of Jinsha River[J]. Journal of Jilin University (Earth Science Edition),2019,49(6):1680-1688.
[30] 欧小强,王奭,李永亮,等.拉林铁路板块缝合带隧道地应力分析[J].吉林大学学报(地球科学版), 2019, 49(6):1689-1697. Ou Xiaoqiang,Wang Shi,Li Yongliang,et al. In-Situ Stress Analysis of Tunnel in Plate Suture Zone of Lhasa-Nyingchi Railway[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1689-1697.
[1] Peng Kairan, Liu Hongshuai, Ping Xinyu, Cheng Kuang. Accuracy of Drag Force Models in the CFD-DEM Method [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(5): 1400-1407.
[2] Wang Ting, Lan Jingyan, Song Xijun, Wu Lianbin, Cai Jindou, Shi Qingqi. Characteristic Analysis of Design Response Spectrum of Sea Soft Soil Site Based on Centrifugal Model Tests [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(5): 1391-1399.
[3] Hong Yong, Li Zirui, Tang Shaoshuai, Wang Luyang, Li Liang. Effect of Average Particle Size on Shear Properties of Sand and Its Mesomechanical Analysis [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1814-1822.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .