Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (4): 1182-1192.doi: 10.13278/j.cnki.jjuese.20200047

Previous Articles     Next Articles

Spatio-Temporal Heterogeneity and Driving Factors of Land Subsidence in Middle-Lower Part of Chaobai River Alluvial Fan

Cheng Rui1,2,3,4, Zhu Lin1,2,3,4, Zhou Jiahui1,2,3,4, Guo Gaoxuan5, Guo Lin1,2,3,4, Li Huijun1,2,3,4, Chen Beibei1,2,3,4   

  1. 1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China;
    2. Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing 100048, China;
    3. Key Laboratory of Land Subsidence Mechanism, Prevention and Control (Capital Normal University), Ministry of Education, Beijing 100048, China;
    4. Laboratory Cultivation Base of Environment Process and Digital Simulation, Beijing 100048, China;
    5. Beijing Institute of Hydrogeology and Engineering Geology, Beijing 100037, China
  • Received:2020-04-28 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by Beijing Natural Science Foundation(8202008), Beijing Outstanding Young Scientist Program (BJJWZYJH01201910028032), Scientific and Technological Innovation Service Capacity Building-the Basic Scientific Research Business Cost (01119530050175) and the General Project of Science and Technology Plan of Beijing Municipal Commission of Education (KM202010028011)

Abstract: To study the spatio-temporal distribution pattern and mechanism of land subsidence, the Chaobai River alluvial fan, a typical subsidence area in Beijing, was selected as the study area, and the spatial heterogeneity and the driving factors of land subsidence were analyzed by using PS-InSAR, global and local moran indices, and geographic detectors. The results showed that the temporal and spatial distribution characteristics of land subsidence in the study area from January 2017 to January 2019 were mainly general subsidence, the subsidence rate was[-133,3] mm/a, and the maximum cumulative subsidence was 261 mm. It was slightly distributed in the north, more severe in the middle, and lighter in the south. The severe and extremely severe land subsidence mainly occurred in eastern Houshayu of Shunyi and Lucheng town at the junction of the middle and lower parts. The land subsidence in different areas presents different spatial heterogeneity, that is, the uneven distribution characteristics are obvious. The middle and lower parts show low-low agglomeration characteristics. Different driving factors of land subsidence are different under different distribution characteristics. The main driving factors in the middle part are the groundwater level change in the second confined aquifer and the thickness of the compressible layers, while the driving factors in the lower part are the groundwater level change in the shallow groundwater and the groundwater level change in the first confined aquifer. This study suggestes that Moran index can be used to effectively analyze the spatial heterogeneity of land subsidence and identify the characteristics of agglomeration, and the geographic detector can be used to find out the causes of spatial heterogeneity of land subsidence and obtain the main driving factors. This study also provides data support and reference for the prevention and control of land subsidence in different hydrogeological units.

Key words: land subsidence, spatial heterogeneity, Moran index, geographical detector, driving factor, Chaobai River

CLC Number: 

  • P642.26
[1] Chen M, Tomás R, Li Z, et al. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry[J]. Remote Sensing, 2016, 8(6):468.
[2] 葛大庆, 张玲, 王艳, 等. 上海地铁10号线建设与运营过程中地面沉降效应的高分辨率InSAR监测及分析[J]. 上海国土资源, 2014(4):62-67. Ge Daqing, Zhang Ling, Wang Yan, et al. Monitoring Subsidence on Shanghai Metro Line 10 During Construction and Operation Using High-Resolution InSAR[J]. Shanghai Land and Resources, 2014(4):62-67.
[3] 赵超英, 张勤, 丁晓利, 等. 基于InSAR的西安地面沉降与地裂缝发育特征研究[J]. 工程地质学报, 2009,17(3):103-107. Zhao Chaoying, Zhang Qin, Ding Xiaoli, et al. InSAR Based Evaluation of Land Subsidence and Ground Fissure Evolution at Xi'an[J]. Journal of Engineering Geology, 2009, 17(3):103-107.
[4] Zhu L, Gong H L, Teatini P, et al. Land Subsidence due to Groundwater Withdrawal in the Northern Beijing Plain, China[J]. Engineering Geology, 2015, 193:243-255.
[5] 张永红, 吴宏安, 康永辉. 京津冀地区1992-2014年三阶段地面沉降InSAR监测[J]. 测绘学报, 2016, 45(9):1050-1058. Zhang Yonghong, Wu Hong'an, Kang Yonghui. Ground Subsidence over Beijing-Tianjin-Hebei Region During Three Periods of 1992 to 2014 Monitored by Interferometric SAR[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9):1050-1058.
[6] Galloway D L, Leake S A. Regional Land Subsidence Caused by the Compaction of Susceptible Aquifer Systems Accompanying Groundwater Extraction[M].[L.n.]:McGraw-Hill Education,2016.
[7] 陈蓓蓓, 宫辉力, 李小娟, 等. 北京地下水系统演化与地面沉降过程[J]. 吉林大学学报(地球科学版), 2012(增刊1):373-379. Chen Beibei, Gong Huili, Li Xiaojuan, et al. Groundwater System Evolution and Land Subsidence Process in Beijing[J]. Journal of Jilin University(Earth Science Edition), 2012(Sup.1):373-379.
[8] Chen B B, Gong H L, Li X J, et al. Spatial-Temporal Characteristics of Land Subsidence Corresponding to Dynamic Groundwater Funnel in Beijing Municipality, China[J]. Chinese Geographical Science, 2011, 21(6):753-764.
[9] 刘凯斯, 宫辉力, 陈蓓蓓. 基于地面沉降监测的地铁运营危险性评价:以北京地铁6号线为例[J]. 地理与地理信息科学, 2018, 34(3):68-73. Liu Kaisi, Gong Huili, Chen Beibei. Assessing the Subway Operational Risk Based on Land Subsidence Monitoring:Taking Beijing Metro Line 6 as an Example[J]. Geography and Geographic Information Science, 2018,34(3):68-73.
[10] 许军强, 马涛, 卢意恺, 等. 基于SBAS-InSAR技术的豫北平原地面沉降监测[J]. 吉林大学学报(地球科学版), 2019, 49(4):1182-1191. Xu Junqiang, Ma Tao, Lu Yikai, et al. Land Subsidence Monitoring in North Henan Plain Based on SBAS-InSAR Technology[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4):1182-1191.
[11] 周超凡, 宫辉力, 陈蓓蓓, 等. 北京地面沉降时空分布特征研究[J]. 地球信息科学学报, 2017, 19(2):205-215. Zhou Chaofan, Gong Huili, Chen Beibei,et al. Study of Temporal and Spatial Characteristics of Land Subsidence in Beijing[J]. Journal of Earth Information Science, 2017,19(2):205-215.
[12] Guo L, Gong H L, Zhu F, et al. Analysis of the Spatiotemporal Variation in Land Subsidence on the Beijing Plain, China[J]. Remote Sensing, 2019, 11:1170.
[13] 王洁, 宫辉力, 陈蓓蓓,等. 基于Morlet小波技术的北京平原地面沉降周期性分析[J]. 吉林大学学报(地球科学版), 2018, 48(3):836-845. Wang Jie, Gong Huili, Chen Beibei, et al. Periodical Analysis of Land Subsidence in Beijing Plain Based on Morlet Wavelet Technology[J]. Journal of Jilin University (Earth Science Edition), 2018,48(3):836-845.
[14] 颉晋荣, 宫辉力, 陈蓓蓓,等. 基于马尔科夫和信息熵的北京平原地面沉降空间结构演化分析[J]. 首都师范大学学报(自然科学版), 2015, 36(6):87-91. Xie Jinrong, Gong Huili, Chen Beibei, et al. Analyze About the Evolution of Deformation Structure in Beijing Plain[J]. Journal of Capital Normal University (Natural Science Edition), 2015, 36(6):87-91.
[15] 何庆成, 刘文波, 李志明. 华北平原地面沉降调查与监测[J]. 高校地质学报, 2006, 12(2):195-209. He Qingcheng, Liu Wenbo, Li Zhiming.Land Subsidence Survey and Monitoring in the North China Plain[J]. Geological Journal of China Universities, 2006, 12(2):195-209.
[16] 宫辉力, 张有全, 李小娟, 等. 基于永久散射体雷达干涉测量技术的北京市地面沉降研究[J]. 自然科学进展, 2009, 19(11):1261-1266. Gong Huili, Zhang Youquan, Li Xiaojuan, et al. Land Subsidence Research in Beijing Based on Radar Interferometry of Permanent Scatterers[J]. Progress in Natural Science, 2009, 19(11):1261-1266.
[17] Dang V K, Doubre C, Weber C, et al. Recent Land Subsidence Caused by the Rapid Urban Development in the Hanoi Urban Region (Vietnam) Using ALOS InSAR Sata[J]. Natural Hazards & Earth System Sciences Discussions, 2014, 14:657-674.
[18] Castellazzi P, Martel R, Rivera A, et al. Groundwater Depletion in Central Mexico:Use of GRACE and InSAR to Support Water Resources Management[J]. Water Resources Research, 2016, 52(8):5985-6003.
[19] 何亚乐, 朱琳, 宫辉力,等. TerraSAR的首都机场形变特征分析[J]. 测绘科学, 2016, 41(12):14-18. He Yale, Zhu Lin, Gong Huili, et al. Analysis of Land Subsidence Features Based on TerraSAR Images in Beijing-Capital International Airport[J]. Science of Surveying and Mapping, 2016, 41(12):14-18.
[20] Zhou C F, Gong H L, Chen B B, et al. Quantifying the Contribution of Multiple Factors to Land Subsidence in the Beijing Plain, China with Machine Learning Technology[J]. Geomorphology, 2019, 335:48-61.
[21] Zhu L, Franceschini A, Gong H, et al. The 3-D Facies and Geomechanical Modeling of Land Subsidence in the Chaobai Plain, Beijing[J]. Water Resources Research, 2020, 56(3). Doi:10.1029/2019WR027026.
[22] 郭高轩, 侯泉林, 许亮, 等.北京潮白河冲洪积扇地下水水化学的分层分带特征[J]. 地球学报, 2014, 35(2):204-210. Guo Gaoxuan, Hou Quanlin, Xu Liang, et al.Delamination and Zoning Characteristics of Quaternary Groundwater in Chaobai Alluvial-Proluvial Fan, Beijing, Based on Hydrochemical Analysis[J]. Acta Geoscientica Sinica, 2014,35(2):204-210.
[23] 蔡向民, 郭高轩, 栾英波, 等.北京山前平原区第四系三维结构调查方法研究[J]. 地质学报, 2009, 83(7):1047-1057. Cai Xiangmin, Guo Gaoxuan, Luan Yingbo,et al. Quaternary Geological Features of Beijing Piedmont Plain Using 3-D Structural Method[J]. Acta Geologica Sinica, 2009,83(7):1047-1057.
[24] 刘予, 叶超, 贾三满. 北京市平原地面沉降区含水岩组和可压缩层划分[J]. 城市地质, 2007, 2(1):10-15. Liu Yu,Ye Chao, Jia Sanman. Division of Water-Bearing Zones and Compressible Layers in Beijing's Land Subsidence Areas[J]. Urban Geology, 2007, 2(1):10-15.
[25] Chen B B, Gong H L, Lei K C, et al. Land Subsidence Lagging Quantification in the Main Exploration Aquifer Layers in Beijing Plain, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,75:54-67.
[26] Haghighi M H,Motagh M. Ground Surface Response to Continuous Compaction of Aquifer System in Tehran, Iran:Results from a Long-Term Multi-Sensor InSAR Analysis[J]. Remote Sensing of Environment,2019,221:534-550.
[27] Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. Proc Igarss,2001,39(1):8-20.
[28] Gao M L, Gong H L, Li X J, et al. Land Subsidence and Ground Fissures in Beijing Capital International Airport (BCIA):Evidence from Quasi-PS InSAR Analysis[J]. Remote Sensing, 2019, 11(12):1466.
[29] Moran P A P. The Interpretation of Statistical Maps[J]. Journal of the Royal Statistical Society:Series B, 1948, 10(2):243-251.
[30] Anselin L. 空间关联的局部指示器:LISA[J]. 地理分析, 1995, 27(2):93-115. Anselin L. Local Indicator of Spatial Association:LISA[J]. Geographic Analysis,1995, 27(2):93-115.
[31] Wang J F, Li X H, Christakos G, et al. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China[J]. International Journal of Geographical Information Science, 2010,24(1):107-127.
[32] 王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134. Wang Jinfeng, Xu Chengdong. Geodetector:Principle and Prospective[J]. Acta Geographica Sinica, 2017,72(1):116-134.
[33] 周亮, 周成虎, 杨帆, 等. 2000-2011年中国PM2.5时空演化特征及驱动因素解析[J].地理学报,2017,72(11):2079-2092. Zhou Liang, Zhou Chenghu, Yang Fan,et al. Spatio-Temporal Evolution and the Influencing Factors of PM2.5 in China Between 2000 and 2011[J]. Acta Geographica Sinica, 2017,72(11):2079-2092.
[34] 石鹏远, 余洁, 朱琳, 等. 应用地理探测器改进地面沉降危险性评估模型的研究[J]. 中国地质灾害与防治学报, 2019, 30(3):101-112. Shi Pengyuan, Yu Jie, Zhu Lin, et al. Hazard Assessment Model of Land Subsidence Based on Geographical Detector[J]. The Chinese Journal of Geological Hazard and Control, 2019,30(3):101-112.
[35] 李佳洺, 陆大道, 徐成东,等. 胡焕庸线两侧人口的空间分异性及其变化[J]. 地理学报, 2017, 72(1):148-160. Li Jiaming, Lu Dadao, Xu Chengdong, et al. Spatial Heterogeneity and Its Changes of Population on the Two Sides of Hu Line[J]. Acta Geographica Sinica, 2017, 72(1):148-160.
[36] 地质灾害危险性评估规范:DZT 0286-2015[S]. 北京:地质出版社, 2015. Specification of Risk Assessment for Geological Hazard:DZT 0286-2015[S]. Beijing:Geological Publishing House, 2015.
[1] Xu Junqiang, Ma Tao, Lu Yikai, Bai Weiming, Zhao Shuai. Land Subsidence Monitoring in North Henan Plain Based on SBAS-InSAR Technology [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(4): 1182-1191.
[2] Luo Zujiang, Ning Di, Du Jingjing, Lu Wei. Influence of Building Load and Groundwater Exploitation on Land Subsidence in Shengze,Wujiang [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 514-525.
[3] Wang Jie, Gong Huili, Chen Beibei, Gao Mingliang, Zhou Chaofan, Liang Yue, Chen Wenfeng. Periodical Analysis of Land Subsidence in Beijing Plain Based on Morlet Wavelet Technology [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 836-845.
[4] Zhou Chaofan, Gong Huili, Chen Beibei, Jia Xu, Zhu Feng, Guo Lin. Assessment to Ground Subsidence Traffic Load in Beijing Area Using Data Field Mode [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1511-1520.
[5] Fu Yanling, Luo Zujiang, Liao Xiang, Zhang Jianmang. A Three-Dimensional Full Coupling Model to Simulate and Predict Land Subsidence Caused by High-Rise Building [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1781-1789.
[6] Fu Yanling,Jin Weize,Chen Xingxian,Tan Jinzhong. Three-Dimensional Numerical Simulation of Land Subsidence and Upheaval Deformation Caused by High-Rise Building Load [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1587-1594.
[7] Chen Rongbo,Shu Longcang,Lu Chengpeng,Li Wei. Experimental Study on the Characteristic Parameters Variation of the Aquifer Caused by Aquifer Compaction [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1958-1965.
[8] Chen Yong, He Zongfa, Li Bing, Zhao Baocheng. Spatial Distribution of Tidal Creeks and Quantitative Analysis of Its Driving Factors in Chongming Dongtan,Shanghai [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 212-219.
[9] FU Yan-ling. Plan and Evaluation of Groundwater Exploitable Resources on the Basis of Land Subsidence Control in the Regional Loose Sediment Area [J]. J4, 2012, 42(2): 476-484.
[10] YU Jun, SU Xiao-si, ZHU Lin, DUAN Fu-zhou, GAO Li, WU Shu-liang. Research on 3D Visualized Strata Model Virtual Reality System of Land Subsidence in Suzhou-Wuxi-Changzhou area [J]. J4, 2007, 37(2): 393-399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[2] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[3] GUO Hong-jin, LI Yong, ZHONG Jian-hua, WANG Hai-qiao. Carbonate Reservoir Properties in Member 1 of Shahejie Formation of Paleogene in the Dongxin Oilfield, Shandong Province[J]. J4, 2006, 36(03): 351 -357 .
[4] DU Ye-bo,JI Han-cheng,ZHU Xiao-min. Research on the Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Western Sichuan Foreland Basin[J]. J4, 2006, 36(03): 358 -364 .
[5] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .
[6] SU Ji-jun, YIN Kun, GUO Tong-tong. Optimization of the JointThread of Diamond WireLine Coring Drill Pipe[J]. J4, 2005, 35(05): 677 -680 .
[7] TANG Jian-sheng, XIA Ri-yuan, ZOU Sheng-zhang, LIANG Bin. Characteristics of Karst Medium System and Its Hydrogeologic Effect in the South Tianshan, Xinjiang[J]. J4, 2005, 35(04): 481 -0486 .
[8] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method[J]. J4, 2005, 35(04): 515 -0519 .
[9] DU Chun-guo, ZOU Hua-yao, SHAO Zhen-jun,ZHANG Jun. Formation Mechanism and Mode of Sand Lens Reservoirs[J]. J4, 2006, 36(03): 370 -376 .
[10] XU Sheng-wei,WANG Ming-chang,BAI Ya-hui,ZHANG Xue-ming. A Study and Implementation of the Distributed Publication Service of Massive Imagery Data Based on J2EE[J]. J4, 2006, 36(03): 491 -496 .