Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (4): 1243-1255.doi: 10.13278/j.cnki.jjuese.20200123

Previous Articles     Next Articles

Adaptive Subtraction of Multiples Based on Empirical Low-Rank Representation

Hu Bin, Wang Deli, Wang Rui, Zhu Hongyu   

  1. College of GeoExploration Sicence and Technology, Jilin University, Changchun 130026, China
  • Received:2020-05-10 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the Major Projects of the National Science and Technology of China (2016ZX05026-002-003) and the National Natural Science Foundation of China (41374108)

Abstract: Multiple attenuation is a research focus in marine seismic data processing. Due to the advantages of high accuracy and low model dependence, the surface-related multiple elimination method achieves multiple attenuation through multiple prediction and adaptive subtraction, so it is widely used in the industry. However, the conventional adaptive subtraction method is not applicable at the primary and multiple intersections, and the phenomenon of primary damage and multiple residuals will increase the difficulty of subsequent seismic processing and interpretation. Based on previous research, in this paper, an adaptive multiple subtraction method based on empirical low-rank representation is proposed. We use the empirical mode decomposition method to improve the conventional low-rank representation method. By adaptively decomposing the seismic signal into low-rank subsets with high signal-to-noise ratio, simple inclination, and smooth event phase, the parameter selection of the local window during the low-rank representation processing is optimized, that is, to reduce the complexity of the dip component of the seismic signal; then the conventional adaptive subtraction method in different low-rank subsets is adopted to avoid the event intersections in the adaptive subtraction, and each subset is reconstructed to improve the multiple attenuation effect under the premise of ensuring the calculation efficiency. In order to verify the effectiveness of the proposed method, we apply it to the synthetic and field examples, the results are better than those of the conventional methods, and the noise sensitivity example proves the robustness of the proposed method.

Key words: low-rank representation, empirical mode decomposition, multiple matching, multiple subtraction

CLC Number: 

  • P631.4
[1] Verschuur D J, Berkhout A J, Wapenaar C P A. Adaptive Surface-Related Multiple Elimination[J]. Geophysics, 1992, 57(9):1166-1177.
[2] Berkhout A J, Verschuur D J. Estimation of Multiple Scattering by Iterative Inversion:Part I:Theoretical Considerations[J]. Geophysics, 1997, 62(5):1586-1595.
[3] Verschuur D J. Estimation of Multiple Scattering by Iterative Inversion:Part II:Practical Aspects and Examples[J]. Geophysics, 1997, 62(5):1596-1611.
[4] Foster D J, Mosher C C. Suppression of Multiple Reflections Using the Radon Transform[J]. Geophysics, 1992, 57(3):386-395.
[5] 石颖, 刘洪, 历玉英. 逆数据域表面多次波压制方法[J].吉林大学学报(地球科学版), 2011, 41(1):271-276. Shi Ying, Liu Hong, Li Yuying. Inverse Data Domain Surface Multiple Suppression Method[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(1):271-276.
[6] Guitton A, Verschuur D J. Adaptive Subtraction of Multiples Using the L1-Norm[J]. Geophysical Prospecting, 2004, 52(1):27-38.
[7] 孙成禹,谢俊法,张立,等. 利用多次波和二维匹配滤波的近偏移距数据重构方法[J].吉林大学学报(地球科学版), 2017, 47(1):224-233. Sun Chengyu, Xie Junfa, Zhang Li, et al. Near-Offset Data Reconstruction Method Using Multiple Wave and Two-Dimensional Matching Filtering[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):224-233.
[8] Herrmann F J, Urs B, Verschuur D J. Non-Linear Primary-Multiple Separation with Directional Curvelet Frames[J]. Geophysical Journal of the Royal Astronomical Society, 2007, 170(2):781-799.
[9] Herrmann F J, Wang D L, Hennenfent G. Multiple Prediction from Incomplete Data with the Focused Curvelet Transform[J]. Society of Exploration Geophysicists, 2007(1):2505.
[10] Wang D, Saab R, Yilmaz O, et al. Bayesian Wavefield Separation by Transform-Domain Sparsity Promotion[J]. Geophysics, 2008, 73(5):A33-A38.
[11] 王德利, 党丹, 刘伟明,等. CFP技术层间多次波预测及Curvelet域相减方法[J].吉林大学学报(地球科学版), 2011, 41(3):907-914. Wang Deli, Dang Dan, Liu Weiming, et al. CFP Technology Internal Multiple Prediction and Curvelet Domain Subtraction Method[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3):907-914.
[12] 王通, 王德利,冯飞, 等.三维稀疏反演多次波预测及曲波域匹配相减技术[J].吉林大学学报(地球科学版), 2017, 47(6):1865-1874. Wang Tong, Wang Deli, Feng Fei, et al. Three-Dimensional Sparse Inversion Multiple Prediction and Curvelet Domain Matching and Subtraction Technology[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1865-1874.
[13] 刘成明, 王德利. 基于贝叶斯理论的Shearlet域一次波与多次波分离[J]. 石油学报, 2016, 37(4):483-489. Liu Chengming, Wang Deli. Separation of Primary and Multiples in Shearlet Domain Based on Bayesian Theory[J]. Acta Petrolei Sinica, 2016, 37(4):483-489.
[14] Markovsky I. Low Rank Approximation:Algorithms, Implementation, Applications[M]. Berlin:Springer Publishing Company, Incorporated, 2011.
[15] Chen Y K, Bai M, Guan Z, et al. Five-Dimensional Seismic Data Reconstruction Using the Optimally Damped Rank-Reduction Method[J]. Geophysical Journal International, 2019,218(1):1.
[16] Gao J, Stanton A, Sacchi M. Parallel Matrix Factorization Algorithm and Its Application to 5D Seismic Reconstruction and Denoising[J]. Geophysics, 2015, 80(6):V173-V187.
[17] Hu B, Wang D L, Zhang L, et al. Structural Analysis of Lunar Regolith from LPR CH-2 Data Based on Adaptive f-x E MD:LPR Data[J]. Advances in Astronomy, 2019(1):1528-1542.
[18] Chen Y, Zhang D, Jin Z, et al. Simultaneous Denoising and Reconstruction of 5D Seismic Data via Damped Rank-Reduction Method[J]. Geophysical Journal International, 2016, 206(3):1695-1717.
[19] Bai M, Wu J, Zu S, et al. A Structural Rank Reduction Operator for Removing Artifacts in Least-Squares Reverse Time Migration[J]. Computers and Geosciences, 2018,117(8):9-20.
[20] Huang W, Wang R, Chen Y, et al. Damped Multichannel Singular Spectrum Analysis for 3D Random Noise Attenuation[J]. Geophysics, 2016, 81(4):V261-V270.
[21] Zou X, Ma Y, Qin Z. Fengyun-3B Microwave Humidity Sounder (MWHS) Data Noise Characterization and Filtering Using Principle Component Analysis[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(12):4892-4902.
[22] Cai J F, Candès E J, Shen Z. A Singular Value Thresholding Algorithm for Matrix Completion[J]. Siam Journal on Optimization, 2010, 20(4):1956-1982.
[23] Horn R A, Johnson C R. Matrix Analysis:矩阵分析[M]. 北京:人民邮电出版社, 2015. Horn R A, Johnson C R. Matrix Analysis[M]. Beijing:Posts & Telecom Press, 2015.
[24] Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings A, 1998, 454:903-995.
[25] Chen Y, Zhou Y, Chen W, et al. Empirical Low-Rank Approximation for Seismic Noise Attenuation[J]. IEEE Transactions on Geoscience & Remote Sensing, 2017, 55(8):1-16.
[26] 石颖,刘洪,邹振.基于波动方程表面多次波预测与自适应相减方法研究[J].地球物理学报, 2010, 53(7):1716-1724. Shi Ying, Liu Hong, Zou Zhen. Surface-Related Multiples Prediction Based on Wave Equation and Adaptive Subtraction Investigation[J]. Chinese Journal of Geophysics, 2010, 53(7):1716-1724.
[1] Zhang Xuebing, Liu Cai, Liu Yang, Wang Dian, Gou Fuyan. Seismic Data Time-Frequency Decomposition Based on Local Mean Decomposition [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1562-1571.
[2] Cai Jianhua, Xiao Xiao. De-Noising of Magnetotelluric Signal in the Ore Concentration Area Based on Combination Filter [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 874-883.
[3] Qin Xiwen, Liu Yuanyuan, Wang Xinmin, Dong Xiaogang, Zhang Yu, Zhou Hongmei. PM2.5 Prediction of Beijing City Based on Ensemble Empirical Mode Decomposition and Support Vector Regression [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 563-568.
[4] Liu Xia, Huang Yang, Huang Jing, Duan Zhiwei. Wavelet Entropy Threshold Seismic Signal Denoising Based on Empirical Mode Decomposition (EMD) [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 262-269.
[5] Wang Zhenghai, Geng Xin, Yao Zhuosen, Hu Guangdao, Fang Chen. Like-Impulse Electromagnetic Noise Processing Based on Empirical Mode Decomposition [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 344-349.
[6] WANG Zhu-wen, WANG Xiao-li, LIU Jing-hua, ZHANG Xue-ang, XIANG Min, YANG Chuang. Joint Time Frequency Characteristics of Array Acoustic Logging Signals on Fractured Formation [J]. J4, 2012, 42(4): 914-920.
[7] DONG Lie-qan, LI Zhen-chun, LIU Lei, LI Zhi-na, SANG Yun-yun. A Method of Curvelet Threshold Denoising Based on Empirical Mode Decomposition [J]. J4, 2012, 42(3): 838-844.
[8] XI Xiao-yu, LIU Hong. The Application of HHT Method in Study of Seismic Cycle [J]. J4, 2007, 37(3): 624-0628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[2] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[3] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .
[4] ZHAO Feng,FAN Hai-feng,TIAN Zhu-jun, WANG Zhi-gang. Analysis of Different Land Use Patterns and Soil Erosion Change in the Middle of Jilin Province[J]. J4, 2005, 35(05): 661 -666 .
[5] XIAO Chang-lai , ZHANG Li-chun ,FANG Zhang ,JIA Tao. Research on Transform Relationship Between Surface Water and Groundwater in Taoer River Fan[J]. J4, 2006, 36(02): 234 -0239 .
[6] ZHANG Hui,LI Tong-lin,DONG Rui-xia. 3D Electromagnetic Inversion by Volume Integral Equation Method Based on Current Dipole Source[J]. J4, 2006, 36(02): 284 -0288 .
[7] ZHANG Fan-qin,WANG Wei-feng,WANG Jian-wei,SUN Fen-jin,LIU Rui-e. Dissolution of Tuff Filling and Its Effects on the Porosity of the Coalformed Gas Reservoir in the Suligemiao Area of the Ordos Basin[J]. J4, 2006, 36(03): 365 -369 .
[8] HUO Qiu-li, WANG Zhen-ying, LI Min,FU Li,FENG Da-chen. Study on the Source and Migration of Oil and Gases in the Beier Depression in the Hailaer Basin[J]. J4, 2006, 36(03): 377 -383 .
[9] JIANG Xiao-yi, ZHOU Yun-xuan. From Space to Time-A Research on SpatioTemporal Data Model[J]. J4, 2006, 36(03): 480 -485 .
[10] GAO Zhi-qian, FAN Tai-liang, LI Yan, LIU Wu-hong, CHEN Yu-lin. Study on Eustatic SeaLevel Change Rule in Cambrian-Ordovician in Tarim Basin[J]. J4, 2006, 36(04): 549 -556 .