Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (4): 1256-1267.doi: 10.13278/j.cnki.jjuese.20200127

Previous Articles     Next Articles

Analysis of Geophysical Characteristics and Favorable Reservoir Prediction of Red Beds in Dongying Sag

Zhang Junhua, Liu Zhen, Li Qin, Ren Xiongfeng, Zhao Jie   

  1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2020-05-21 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Science and Technology Major Project (2017ZX05072-001, 2017ZX05009-001), the Project of Sinopec (P18051-4), the Graduate Innovation Project of China University of Petroleum (YCX2021014) and the Fund of China Scholarship Council (202106450009)

Abstract: The deep reservoir of Dongying sag is a set of red beds under dry sedimentary environment. The reservoir of Ek1z has a great exploration potential with large thickness and less drilling. However, the reservoir prediction is very difficult,as the layer structure in the target area is complex, the burial depth becomes deeper from south to north gradually, and the consistency of well-to-seismic relationship is not good. Through a comprehensive analysis of well-to-seismic characteristics, the seismic attributes were optimized and the relationship of well-to-seismic thickness was established. Using the single best attribute method, multiple linear regression method, and learning-type nonlinear reservoir prediction method, the understandings and conclusions are drawn as follows:1) The red bed in the study area has the typical characteristics of thin inter-beds, with higher frequency than the overlying and underlying strata, medium amplitude seismic reflection, low continuity, and low signal-to-noise ratio; 2) Based on the dominant frequency, the newly developed mobility attribute has the best thickness correlation and the maximum amplitude, the root mean square amplitude, zero crossing count,and the energy half-time attribute is also better; 3) Whether it is linear regression or nonlinear support vector machine (SVM) method, the optimized five attributes reservoir prediction effect is better than that of seven attributes; 4) The cross-validation based SVM method is the most suitable one for the thickness prediction of small sample wells in deep reservoirs, and its effect is better than the single best attribute method and the multiple regression method.

Key words: Dongying sag, red beds, well-to-seismic relationship, mobility, multiple linear regression, cross validation SVM, reservoir prediction

CLC Number: 

  • P631.4
[1] 王健,操应长,高永进,等. 东营凹陷古近系红层储层成岩作用特征及形成机制[J]. 石油学报, 2013, 34(2):283-292. Wang Jian, Cao Yingchang, Gao Yongjin, et al. Diagenetic Characteristics and Formation Mechanism of Paleogene Red-Bed Reservoirs in Dongying Sag[J]. Acta Petrolei Sinica, 2013, 34(2):283-292.
[2] 李继岩. 渤海湾盆地东营凹陷东段红层储层成岩环境时空演化及成岩孔隙演化[J].石油与天然气地质,2017,38(1):90-97. Li Jiyan. Temporal-Spatial Evolution of Diagenetic Environment and Diagenesis Pore Evolutionary Process of Red Beds in the Eastern Dongying Sag, Bohai Bay Basin[J]. Oil & Gas Geology, 2017, 38(1):90-97.
[3] 董大伟,李继岩,王晓蕾,等.渤海湾盆地东营凹陷东部孔店组红层储层特征及控制因素[J].中国石油大学学报(自然科学版), 2017, 41(5):20-29. Dong Dawei, Li Jiyan, Wang Xiaolei, et al. Reservoir Characteristics and Controlling Factors of Red Bed of Kongdian Formation in Eastern Dongying Depression, Bohai Bay Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(5):20-29.
[4] 王健,操应长,高永进,等. 东营凹陷古近系红层砂体有效储层的物性下限及控制因素[J]. 中国石油大学学报(自然科学版),2011,35(4):27-33. Wang Jian, Cao Yingchang, Gao Yongjin, et al. Petrophysical Parameter Cutoff and Controlling Factors of Effective Reservoir of Red Beds Sandbodies of Paleogene in Dongying Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(4):27-33.
[5] 杨勇强,邱隆伟,孙宝强. 陆相"红层"等时地层对比新方法在东营凹陷南斜坡的应用[J]. 中国石油大学学报(自然科学版),2012,36(2):16-21. Yang Yongqiang, Qiu Longwei, Sun Baoqiang. Application of New Method of Time-Stratigraphic Comparison of Terrestrial Red Beds in Southern Slope of Dongying Depression[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(2):16-21.
[6] 刘传虎,韩宏伟. 济阳坳陷古近系红层沉积成藏主控因素与勘探潜力[J]. 石油学报,2012,33(增刊1):63-70. Liu Chuanhu, Han Hongwei. Main Controlling Factors of Deposition, Hydrocarbon Accumulation and Exploration Potential of Paleogene Red Beds in Jiyang Depression[J]. Acta Petrolei Sinica, 2012, 33(Sup.1):63-70.
[7] 李继岩,贾光华,王晓蕾,等. 地球物理相在东营凹陷始新统红层沉积相研究中的应用[J]. 测井技术,2016, 40(2):220-228. Li Jiyan, Jia Guanghua, Wang Xiaolei, et al. Application of Geophysical Facies to Sedimentary Facies Study in the Eocene Red-Beds, Dongying Sag[J]. Well Loging Technology, 2016, 40(2):220-228.
[8] 刘书会,唐东,陈敬义.东营凹陷南坡西段红层地球物理特征及储层预测[J].油气地质与采收率,2012,19(3):53-56. Liu Shuhui, Tang Dong, Chen Jingyi. The Geophysical Characteristics and Reservoir Prediction of the Red Layer in the Western Section of the South Slope of Dongying Depression[J]. Petroleum Geology and Recovery Efficiency, 2012, 19(3):53-56.
[9] 潘兴祥. 东营凹陷南坡西段"红层"储层地震描述方法[J]. 石油地球物理勘探,2013,48(增刊1):82-88. Pan Xingxiang. The Method of Describing the Earthquake of the "Red Layer" Reservoir in the Western Section of the South Slope of the Dongying Depression[J]. Oil Geophysical Prospecting, 2013, 48(Sup.1):82-88.
[10] 才巨宏. 红层岩石物理特征与储层预测技术研究:以东营凹陷纯化地区为例[J]. 工程地球物理学报,2012,9(3):306-310. Cai Juhong. A Study of Redbed Rock Physical Features and Reservoir Forecasting Techniques[J]. Chinese Journal of Engineering Geophysics, 2012, 9(3):306-310.
[11] 王永刚,张军华,乐友喜. 地震属性分析技术[M]. 东营:中国石油大学出版社,2007. Wang Yonggang, Zhang Junhua, Yue Youxi. Seismic Attributes Analysis Techniques[M]. Dongying:China University of Petroleum Press, 2007.
[12] 张军华,王庆峰,张晓辉,等. 薄层和薄互层叠后地震解释关键技术综述[J]. 石油物探,2017,56(4):459-471. Zhang Junhua, Wang Qingfeng, Zhang Xiaohui, et a1. Poststack Interpretation Key Techniques for Thin Layer and Thin Interbed Reservoirs[J]. Geophysical Prospecting for Petroleum, 2017, 56(4):459-471.
[13] 张军华,桂志鹏,刘显太,等. 过零点个数地震属性理论诠释及应用[J]. 地球物理学进展,2020,35(1):258-264. Zhang Junhua, Gui Zhipeng, Liu Xiantai, et al. Theory Annotation and Application for the Zero Crossing Count Attribute[J]. Progress in Geophysics, 2020,35(1):258-264.
[14] Silin D, Goloshubin G. An Asymptotic Model of Seismic Reflection from a Permeable Layer[J]. Transport in Porous Media, 2010, 83(1):233-256.
[15] 代双和,陈志刚,于京波,等. 流体活动性属性技术在KG油田储集层描述中的应用[J]. 石油勘探与开发, 2010,37(5):573-578. Dai Shuanghe, Chen Zhigang, Yu Jingbo, et al. Application of the Fluid Mobility Attribute Technique in the Reservoir Characterization of KG Oilfield, Algeri[J]. Petroleum Exploration and Development, 2010, 37(5):573-578.
[16] 蔡涵鹏. 基于地震资料低频信息的储层流体识别[D]. 成都:成都理工大学, 2012. Cai Hanpeng. Reservoir Fluid Identification from Low-Frequency Seismic Wave[D]. Chengdu:Chengdu University of Technology, 2012.
[17] 陈学华,贺振华,朱四新,等. 地震低频信息计算储层流体流度的方法及其应用[J]. 应用地球物理, 2012,9(3):326-332. Chen Xuehua, He Zhenhua, Zhu Sixin, et al. Seismic Low Frequency Based Calculation of Reservoir Fluid Mobility and Its Applications[J]. Applied Geophysics, 2012, 9(3):326-332.
[18] 于正军,董冬冬,宋维琪,等. 相带控制下协克里金方法孔隙度预测[J] 地球物理学进展, 2012, 27(4):1581-1587. Yu Zhengjun, Dong Dongdong, Song Weiqi, et a1. Porosity Prediction with Co-Kriging Method Controlled by Sedimentary Facies[J]. Progress in Geophysics, 2012, 27(4):1581-1587.
[19] 乐友喜,王永刚. 非参数回归法在孔隙度参数预测中的应用[J]. 地质科学,2002,37(1):118-126. Yue Youxi, Wang Yonggang. Nonparametric Regression Applied in Porosity Parameter Prediction[J]. Chinese Journal of Geology, 2002, 37(1):118-126.
[20] 宋建国,杨璐,高强山,等. 强容噪性随机森林算法在地震储层预测中的应用[J].石油地球物理勘探, 2018,53(5):954-960. Song Jianguo, Yang Lu, Gao Qiangshan, et al. Application of Random Forest Algorithm with Strong Tolerant Noise in Seismic Reservoir Prediction[J]. Oil Geophysical Prospecting, 2018, 53(5):954-960.
[21] 杨柳青,陈伟,查蓓. 利用卷积神经网络对储层孔隙度的预测研究与应用[J]. 地球物理学进展,2019, 34(4):1548-1555. Yang Liuqing, Chen Wei, Zha Bei. Prediction and Application of Reservoir Porosity by Convolutional Neural Network[J]. Progress in Geophysics, 2019, 34(4):1548-1555.
[22] 倪维军,李琪,郭文惠,等.基于支持向量机的页岩储层横波速度预测[J].西安石油大学学报(自然科学版),2017,32(4):46-49. Ni Weijun, Li Qi, Guo Wenhui, et al. Prediction of Shear Wave Velocity in Shale Reservoir Based on Support Vector Machine[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2017, 32(4):46-49.
[23] 张尔华,关晓巍,张元高.支持向量机模型在火山岩储层预测中的应用:以徐家围子断陷徐东斜坡带为例[J].地球物理学报, 2011,54(2):428-432. Zhang Erhua, Guan Xiaowei, Zhang Yuangao. Support Vector Machine Involcanic Reservoir Forecast:East Slope in Xujiaweizi Depression[J]. Chinese Journal of Geophysics, 2011, 54(2):428-432.
[24] Vapnik V N, Golowich S E, Smola A. Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing[J]. Advances in Neural Information Processing Systems, 1996, 9(9):281-287.
[25] Luo W P, Li H Q, Shi N. Semi-Supervised Least Squares Support Vector Machine Algorithm:Application to Offshore Oil Reservoir[J]. Applied Geophysics, 2016, 13(2):406-415.
[26] 韩启迪, 张小桐, 申维. 基于决策树特征提取的支持向量机在岩性分类中的应用[J]. 吉林大学学报(地球科学版), 2019, 49(2):611-620. Han Qidi, Zhang Xiaotong, Shen Wei. Application of Support Vector Machine Based on Decision Tree Feature Extraction in Lithology Classification[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2):611-620.
[1] Wu Meng, Qin Yong, Wang Xiaoqing, Li Guozhang, Zhu Chao, Zhu Shifei. Fluid Mobility and Its Influencing Factors of Tight Sandstone Reservoirs in China [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 35-51.
[2] Wang Feiyu, Feng Weiping, Guan Jing, He Zhiyong. Geochemical Assessment of Lacustrine Tight Oil and Application [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 388-397.
[3] Zhao Li, Li Li, Dong Dawei. Basin's Sedimentary-Tectonic Wave Analysis Based on Wavelet Transform [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1227-1236.
[4] Ji Yanju, Feng Xue, Yu Mingmei, Xu Jiang, Hu Yanpu, Guan Shanshan. Conductivity-Depth Identification of HTEM 3D Anomalies Based on Multiple Linear Regression [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1687-1694.
[5] Qin Xuefei, Li Wei. Research of Identification and Trimming of Coal-Bed Interference in Daniudi Gas Field [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 1048-1054.
[6] Xue Qunwei, Liu Yanhui, Tang Can. Early Warning Statistical Model of Sudden Geological Hazards and Its Application [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1614-1622.
[7] Wang Yanzhong, Cao Yingchang, Xi Kelai. New View on the Concept of Secondary Pore Developing Zones and Its Significance of Petroleum Geology [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 659-668.
[8] Yue Youxi, Huang Jianliang, Zhang Yang, Zhou Lei, Zhang Yuming,Chen Kongquan. Seismic Reservoir Prediction Technology Constrained by Geology Model and the Application in Lishu Fault Depression [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 632-640.
[9] Liu Hua,Jiang You-lu,Xu Hao-qing,Song Guo-qi,Cai Dong-mei. Genetic Types and Accumulation Model of the Deep Cracked Gas Pools of Minfeng Area in Dongying Sag [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1638-1646.
[10] CHANG Xiang-chun, HAN Zuo-zhen, YAN Cheng-peng. Geochemistry and Accumulation Characteristics of Es4 Mixed Oils in the South Slope of Dongying Sag [J]. J4, 2012, 42(3): 672-680.
[11] QIN Yue-shuang, CHEN You-fu, YE Ping. Seismic Prediction Reservoir by Tracking Thin and Narrow Sand [J]. J4, 2012, 42(1): 269-274.
[12] HAO Li-bo, DONG Jing, ZHAO Yu-yan, LU Ji-long, BI Xiao-gang. Geochemical Characteristics of Granite Weathering in Central Jilin Province [J]. J4, 2011, 41(5): 1441-1447.
[13] SU Ming-jun, ZHOU Li-hong, WANG Xi-wen, LI SHeng-jun, ZHANG Zhao-hui. Technique and Application of Lithological-Stratigraphic Trap Identification in Slope Environments:A Case on Eastern Coast Region in Qikou Depression [J]. J4, 2011, 41(3): 673-679.
[14] YANG Yong-qiang, QIU Long-wei, JIANG Zai-xing, BAI Feng-kun. Beach Bar-Provenance System on the Upper Part of Fourth Member of Shahejie Formation, in Dongying Sag [J]. J4, 2011, 41(1): 46-53.
[15] WANG Jian-wei, SONG Guo-qi, SONG Shu-jun,ZHAO Mi-fu, GAO Xia. Geochemical Characteristics of the Oils in the Kongdian Formation in the Southern Slope of the Dongying Sag and Their Source Rocks [J]. J4, 2008, 38(1): 56-0062.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[2] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[3] GUO Hong-jin, LI Yong, ZHONG Jian-hua, WANG Hai-qiao. Carbonate Reservoir Properties in Member 1 of Shahejie Formation of Paleogene in the Dongxin Oilfield, Shandong Province[J]. J4, 2006, 36(03): 351 -357 .
[4] DU Ye-bo,JI Han-cheng,ZHU Xiao-min. Research on the Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Western Sichuan Foreland Basin[J]. J4, 2006, 36(03): 358 -364 .
[5] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .
[6] SU Ji-jun, YIN Kun, GUO Tong-tong. Optimization of the JointThread of Diamond WireLine Coring Drill Pipe[J]. J4, 2005, 35(05): 677 -680 .
[7] TANG Jian-sheng, XIA Ri-yuan, ZOU Sheng-zhang, LIANG Bin. Characteristics of Karst Medium System and Its Hydrogeologic Effect in the South Tianshan, Xinjiang[J]. J4, 2005, 35(04): 481 -0486 .
[8] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method[J]. J4, 2005, 35(04): 515 -0519 .
[9] DU Chun-guo, ZOU Hua-yao, SHAO Zhen-jun,ZHANG Jun. Formation Mechanism and Mode of Sand Lens Reservoirs[J]. J4, 2006, 36(03): 370 -376 .
[10] XU Sheng-wei,WANG Ming-chang,BAI Ya-hui,ZHANG Xue-ming. A Study and Implementation of the Distributed Publication Service of Massive Imagery Data Based on J2EE[J]. J4, 2006, 36(03): 491 -496 .