Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (4): 1276-1283.doi: 10.13278/j.cnki.jjuese.20200129

Previous Articles     Next Articles

Lunar Dust Detection Progress and Future Prospects

Li Cunhui1, Zhang Xiaoping2, Zhang He3, Wang Yi1, Xie Lianghai2, Yan Qi2, Ma Jinan3, Zhang Haiyan1, Zhuang Jianhong1, Zhao Chengxuan1   

  1. 1. Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000, China;
    2. State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China;
    3. Beijing Institute of Spacecraft System Engineering, Beijing 100049, China
  • Received:2020-05-23 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (11761161001, 41704167) and the Science and Techno-logy Development Fund (FDCT) of Macau (020/2014/A1, 008/2017/AFJ, 0042/2018/A2)

Abstract: Lunar dust research has important scientific and engineering values. Although it has been studied for several decades,the transportation of natural dust activity near the Moon surface and its physical mechanism remain unclear due to the lack of quantitative measurements of relevant physical parameters,which is the bottle neck of lunar dust research. So far, Apollo's lunar dust observations still remain a scientific mystery. With China's Chang'e 3 lunar exploration data,scientists have obtained the dust deposition rates and maximum levitated height on the lunar surface. Compared with the previous Apollo measurements,these results indicate that the dust activity has significant regional differences. In Chang'e 5 lunar mission,the in-situ charging properties of levitated dust will be measured. To further promote the lunar dust research,it is very important to systematically and quantitatively measure the physical parameters of the lunar dust transportation in the high-latitude region in the future lunar missions,which will be vital to reveal the physical mechanism of dust transportation under different influence factors such as different latitude and longitude regions,different solar conditions,different solar wind conditions, and different terrain conditions. These measurements will provide quantitative constraints in theoretical models and will surely lead to new and important scientific discoveries.

Key words: lunar dust, scientific topics, research progress, detection scheme

CLC Number: 

  • P184.5
[1] Szalay J R, Poppe A R, Agarwal J, et al. Dust Phenomena Relating to Airless Bodies[J]. Space Science Reviews, 2018, 214(5):98.
[2] Liu Y, Taylor L A. Characterization of Lunar Dust and a Synopsis of Available Lunar Simulants[J]. Planetary and Space Science, 2011, 59(14):1769-1783.
[3] Rennilson J J, Criswell D R. Surveyor Observations of Lunar Horizon-Glow[J]. The Moon, 1974, 10(2):121-142.
[4] Mccoy J, Criswell D R. Evidence for a High Altitude Distribution of Lunar Dust[C]//Lunar and Planetary Science Conference Proceedings. New York:Pergamon Press Inc, 1974:2991-3005.
[5] Mccoy J. Photometric Studies of Light Scattering Above the Lunar Terminator from Apollo Solar Corona Photography[C]//Lunar and Planetary Science Conference Proceedings. New York:Pergamon Press Inc, 1976:1087-1112.
[6] Glenar D A, Stubbs T J, Mccoy J E, et al. A Reanalysis of the Apollo Light Scattering Observations, and Implications for Lunar Exospheric Dust[J]. Planetary and Space Science, 2011, 59:1695-1707.
[7] Berg O E, Wolf H, Rhee J. Lunar Soil Movement Registered by the Apollo 17 Cosmic Dust Experiment[C]//Interplanetary Dust and Zodiacal Light. Berlin:Springer-Verlag, 1976:233-237.
[8] Colwell J E, Batiste S, Horányi M, et al. Lunar Surface:Dust Dynamics and Regolith Mechanics[J]. Reviews of Geophysics, 2007, 45. doi:10.1029/2005RG000184.
[9] Park J, Liu Y, Kihm K D, et al. Characterization of Lunar Dust for Toxicological Studies:I:Particle Size Distribution[J]. Journal of Aerospace Engineering, 2008, 21(4):266-271.
[10] Liu Y, Park J, Schnare D, et al. Characterization of Lunar Dust for Toxicological Studies:II:Texture and Shape Characteristics[J]. Journal of Aerospace Engineering, 2008, 21(4):272-279.
[11] Taylor L, Schmitt H, Carrier W, et al. Lunar Dust Problem:From Liability to Asset[C]//Proceedings of the 1st Space Exploration Conference:Continuing the Voyage of Discovery, Space Exploration Conferences. Orlando:American Institute of Aeronautics and Astronautics Inc, 2005. doi:10.2514/6.2005-2510.
[12] Zook H A, Mccoy J E. Large Scale Lunar Horizon Glow and a High Altitude Lunar Dust Exosphere[J]. Geophysical Research Letters, 1991, 18(11):2117-2120.
[13] O'Brien B J. Paradigm Shifts About Dust on the Moon:From Apollo 11 to Chang'E-4[J]. Planetary and Space Science, 2018, 156:47-56.
[14] Kuznetsov I A, Zakharov A V, Dolnikov G G, et al. Lunar Dust:Properties and Investigation Techniques[J]. Solar System Research, 2017, 51(7):611-622.
[15] Horányi M, Szalay J R, Kempf S, et al. A Permanent, Asymmetric Dust Cloud Around the Moon[J]. Nature, 2015, 522:324-326.
[16] Xie L, Zhang X, Zheng Y, et al. Solar Wind-Generated Current in the Lunar Dust Experiment[J]. Geophysical Research Letters, 2016, 43:3662-3669.
[17] Szalay J R, Horányi M. Lunar Meteoritic Gardening Rate Derived from in Situ LADEE/LDEX Measurements[J]. Geophysical Research Letters, 2016, 43:4893-4898.
[18] Wang X, Schwan J, Hsu H W, et al. Dust Charging and Transport on Airless Planetary Bodies[J]. Geophysical Research Letters, 2016, 43:6103-6110.
[19] Wang X, Horányi M, Robertson S. Experiments on Dust Transport in Plasma to Investigate the Origin of the Lunar Horizon Glow[J]. Journal of Geophysical Research, 2009, 114:A05103.
[20] Wang X, Horányi M, Robertson S. Investigation of Dust Transport on the Lunar Surface in a Laboratory Plasma with an Electron Beam[J]. Journal of Geophysical Research, 2010, 115:A11102.
[21] Sun Y, Liu J G, Kong Y D, et al. Effects of Lunar Soil Simulant on Systemic Oxidative Stress and Immune Response in Acute Rat Lung Injury[J]. International Journal of Pharmacology, 2018, 14:766-772.
[22] Sun Y, Liu J, Zhang X, et al. Mechanisms Involved in Inflammatory Pulmonary Fibrosis Induced by Lunar Dust Simulant in Rats[J]. Environmental Toxicology, 2019, 34:131-140.
[23] Sun Y, Zhang L, Liu J, et al. Effects of Lunar Dust Simulant on Cardiac Function and Fibrosis in Rats[J]. Toxicol Res, 2019, 8:499-508.
[24] 袁勇,赵晨,胡震宇. 月球基地建设方案设想[J]. 深空探测学报, 2018, 5(4):374-381. Yuan Yong, Zhao Chen, Hu Zhenyu. Prospect of Lunar Base Construction Scheme[J]. Joumal of Deep Space Exploration, 2018, 5(4):374-381.
[25] Li D T, Wang Y, Zhang H, et al. In-Situ Measurements of Lunar Dust at the Chang'E-3 Landing Site in the Northern Mare Imbrium[J]. Jounal of Geophysical Research:Planets, 2019, 124(8):2168-2177.
[26] Zhang H Y, Wang Y, Chen L P, et al. In-Situ Lunar Dust Deposition Amount Induced by Lander Landing in Chang'E-3 Mission[J]. Science China:Technological Science, 2020, 63(3):520-527.
[27] Yan Q, Zhang X P, Xie L H, et al. Weak Dust Activity near a Geologically Young Surface Revealed by Chang'E-3 Mission[J]. Geophysical Research Letters, 2019, 46(16):9405-9413.
[28] Xiao L, Zhu P M, Fang G Y, et al. A Young Multilayered Terrane of the Northern Mare Imbrium Revealed by Chang'E-3 Mission[J]. Science, 2015, 347:1226-1229.
[29] Hurwitz D, Kring D A. Identifying the Geologic Context of Apollo 17 Impact Melt Breccias[J]. Earth and Planetary Science Letters, 2016, 436:64-70.
[30] Crozaz G, Drozd R, Hohenberg C, et al. Lunar Surface Dynamics:Some General Conclusions and New Results from Apollo 16 and 17[C]//Lunar Science Conference, 5th. Houston:Pergamon Press Inc, 1974:2475-2499.
[31] Wang Z C, Wu Y Z, Blewett D T, et al. Submicroscopic Metallic Iron in Lunar Soils Estimated from the in Situ Spectra of the Chang'E-3 Mission[J]. Geophysical Research Letters, 2017, 44(8):3485-3492.
[32] Stubbs T J, Vondrak R R, Farrell W M. A Dynamic Fountain Model for Lunar Dust[J]. Advances in Space Research, 2006, 37(1):59-66.
[33] Stubbs T J, Farrell W M, Halekas J S, et al. Dependence of Lunar Surface Charging on Solar Wind Plasma Conditions and Solar Irradiation[J]. Planetary and Space Science, 2014, 90:10-27.
[34] Wang J, He X M, Cao Y. Modeling Electrostatic Levitation of Dust Particles on Lunar Surface[J]. IEEE Transactions on Plasma Science, 2008, 36(5):2459-2466.
[35] Pines V, Zlatkowski M, Chait A. Lofted Charged Dust Distribution Above the Moon Surface[J]. Planetary and Space Science, 2011, 59:1795-1803.
[36] Collier M R, Farrell W M, Stubbs T J. The Lunar Dust Pendulum[J]. Advances in Space Research, 2013, 52:251-261.
[37] Hartzell C M, Scheeres D J. Dynamics of Levitating Dust Particles near Asteroids and the Moon[J]. Journal of Geophysical Research-Planets, 2013, 18:116-125.
[38] Kimura H, Senshu H, Wada K. Electrostatic Lofting of Dust Aggregates near the Terminator of Airless Bodies and Its Implication for the Formation of Exozodiacal Disks[J]. Planetary and Space Science, 2014,100:64-72.
[39] Hess S L G, Sarrailh P, Matéo-Veléz J C, et al. New SPIS Capabilities to Simulate Dust Electrostatic Charging, Transport, and Contamination of Lunar Probes[J]. IEEE Transactions on Plasma Science, 2015, 43(9):2799-2807.
[40] Dyadechkin S, Kallio E, Wurz P. New Fully Kinetic Model for the Study of Electric Potential, Plasma, and Dust Above Lunar Landscapes[J]. Journal of Geophysical Research-Space Physics, 2015, 120:1589-1606.
[41] Bussey D B J, Spudis P D, Robinson M S. Illumination Conditions at the Lunar South Pole[J]. Geophysical Research Letters, 1999, 26(9):1187-1190.
[42] Bussey D B J, Fristad K E, Schenk P M, et al. Planetary Science:Constant Illumination at the Lunar North Pole[J]. Nature, 2005, 434:842-842.
[43] 欧阳自远.月球科学概论[M].北京:中国宇航出版社, 2005. Ouyang Ziyuan. Introduction to Lunar Science[M]. Beijing:China Astronautic Publishing House, 2005.
[44] Lee P. Dust Levitation on Asteroids[J]. Icarus, 1996, 124(1):181-194.
[45] Lee L H. Adhesion and Cohesion Mechanisms of Lunar Dust on the Moon's Surface[J]. Journal of Adhesion Science and Technology, 1995, 9(8):1103-1124.
[46] Horányi M, Robertson S, Walch B. Electrostatic Charging Properties of Simulated Lunar Dust[J]. Geophysical Research Letters, 1995, 22(16):2079-2082.
[47] Colwell J E, Robertson S R, Horányi M, et al. Lunar Dust Levitation[J]. Aerospace Engineering, 2009, 22(1):2-9.
[48] Wang Xu, Colwell J E, Horányi M, et al, Charge of Dust on Surfaces in Plasma[J]. IEEE Transactions on Plasma Science, 2007, 35(2):271-279.
[49] Horányi M, Sternovsky Z, Lankton M, et al. The Lunar Dust Experiment (LDEX) Onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission[J]. Space Science Reviews, 2014, 185(1/2/3/4):93-113.
[50] Grün E, Horányi M, Sternovsky Z. The Lunar Dust Environment[J]. Planetary & Space Science, 2011, 59(14):1672-1680.
[51] Popel S I, Kopnin S I, Golub' A P, et al. Dusty Plasma at the Surface of the Moon[J]. Solar System Research, 2013, 47(6):419-429.
[52] Wallace W T. Lunar Dust and Lunar Simulant Activation and Monitoring[J]. Meteoritics & Planetary Science, 2009, 44:961-970.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[2] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[3] GUO Hong-jin, LI Yong, ZHONG Jian-hua, WANG Hai-qiao. Carbonate Reservoir Properties in Member 1 of Shahejie Formation of Paleogene in the Dongxin Oilfield, Shandong Province[J]. J4, 2006, 36(03): 351 -357 .
[4] DU Ye-bo,JI Han-cheng,ZHU Xiao-min. Research on the Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Western Sichuan Foreland Basin[J]. J4, 2006, 36(03): 358 -364 .
[5] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .
[6] SU Ji-jun, YIN Kun, GUO Tong-tong. Optimization of the JointThread of Diamond WireLine Coring Drill Pipe[J]. J4, 2005, 35(05): 677 -680 .
[7] TANG Jian-sheng, XIA Ri-yuan, ZOU Sheng-zhang, LIANG Bin. Characteristics of Karst Medium System and Its Hydrogeologic Effect in the South Tianshan, Xinjiang[J]. J4, 2005, 35(04): 481 -0486 .
[8] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method[J]. J4, 2005, 35(04): 515 -0519 .
[9] DU Chun-guo, ZOU Hua-yao, SHAO Zhen-jun,ZHANG Jun. Formation Mechanism and Mode of Sand Lens Reservoirs[J]. J4, 2006, 36(03): 370 -376 .
[10] XU Sheng-wei,WANG Ming-chang,BAI Ya-hui,ZHANG Xue-ming. A Study and Implementation of the Distributed Publication Service of Massive Imagery Data Based on J2EE[J]. J4, 2006, 36(03): 491 -496 .