Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (4): 1054-1063.doi: 10.13278/j.cnki.jjuese.20200181

Previous Articles     Next Articles

Multifractal Characteristics of Metallogenic Elements and Their Implications to the Mineralization Intensity in Pulang Porphyry Copper Deposit

Wan Li1,2, Liu Hui1, Zeng Xiangjian1   

  1. 1. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China;
    2. Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes (Guangzhou University), Guangdong 510006, China
  • Received:2020-12-01 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41872246) and Innovation Research for the Postgraduate of Guangzhou University (2020GDJC-M33)

Abstract: The variation of the ore-forming element grade, determined by the geological process, have strong random and nonlinearity features. Identifying the characteristics of ore-forming elements is of significance for better understanding the ore-forming process and mineral prospecting. In this paper, the multifractal detrending moving average (MFDMA) model is applied to describe the multifractal characteristics of Cu element distributions and their implications to mineralization intensity in the No.4 exploration line borehole from Pulang porphyry copper deposit in Yunnan, China. The results reveal that the sequence of Cu in all boreholes exhibits multifractal scaling and local singularity differences in different mineralization grades. The multifractal strength increases with the decrease of mineralization intensity. The high grade Cu of strongly mineralized boreholes is relatively enriched in the inner side of the potassium silicification-sericitization zone, while is relatively dispersed in the outer hornization-qingpanlithalization zone. Moreover, hrough analyzing the data that are arranged in random order in the shuffling procedure, we find that the multifractality structure of Cu grades series is due to both the fat-tail probability density function and long-range correlation, and the latter is more significant than the former.

Key words: multifractal detrended moving average (MFDMA) method, multifractal scaling, singularity, metallogenic element, mineralization intensity, Pulang porphyry copper deposit

CLC Number: 

  • P618.41
[1] Richards J P, Spell T, Rameh E A. et al. High Sr/Y Magmas Reflect Arcmaturity, High Magmatic Water Content, and Porphyry Cu±Mo±Au Potential:Examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan[J]. Economic Geology, 2012, 107(2):295-332.
[2] 赵鹏大.定量地学方法及应用[M]. 北京:高等教育出版社,2004:1-10. Zhao Pengda. Quantitative Geologic Method and Its Application[M]. Beijing:Higher Education Press, 2004:1-10.
[3] 成秋明. 地质异常的奇异性度量与隐伏源致矿异常识别[J]. 地球科学:中国地质大学学报,2011,36(2):307-316. Cheng Qiuming. Singularity Modeling of Geo-Anomalies and Recognition of Anomalies Caused by Buried Sources Earth[J]. Earth Science:Journal of China University of Geosciences,2011, 36(2):307-316.
[4] Cheng Qiuming, Agterberg Frits. Singularity Analysis of Ore-Mineral and Toxic Trace Elements in Stream Sediments[J]. Computers & Geosciences, 2009, 35:234-244.
[5] Cheng Qiuming. Multifractal Modelling and Spectrum Analysis:Methods and Applications to Gamma Ray Spectrometer Data from Southwestern Nova Scotia,Canada[J]. Science in China:Series D:Earth Sciences, 2006, 49(3):283-294.
[6] 万丽,刘欢,杨林,等.成矿元素巨量聚集的混沌机制:斑岩型和构造蚀变岩型矿床例析[J]. 岩石学报,2015,31(11):3455-3465. Wan Li, Liu Huan, Yang Lin, et al. Chaotic Mechanisms of the Ore-Forming Element Accumulation:Case Study of Porphyry and Disseminated-Veinlet Gold Deposits[J]. Acta Petrologica Sinica, 2015, 31(11):3455-3465.
[7] Wan Li, Zhu Yongqian, Deng Xiaocheng. Multifractal Characteristics of Gold Grades Series in the Dayingezhuang Deposit, Jiaodong Gold Province, China[J]. Earth Science Informatics, 2015, 8(4):843-851.
[8] 万丽,邓小成,王庆飞,等. MF-DFA方法与成矿元素分布特征:以山东大尹格庄金矿为例[J]. 中国矿业大学学报, 2012, 41(1):133-138. Wan Li, Deng Xiaocheng, Wang Qingfei, et al. Method of MF-DFA and Distribution Characteristics of Metallogenic Elements:Examplefrom the Dayingezhuang Gold Deposit, China[J]. Journal of China University of Mining Technolgy, 2012, 41(1):133-138.
[9] 万丽,胡序懿,邓小成. 成矿元素含量序列的近似熵分析及矿化识别[J]. 中国矿业大学学报,2014,43(2):345-350. Wan Li,Hu Xuyi, Deng Xiaocheng. Approximate Entropy Analysis of Metallogenic Element Content Sequences and Identification of Mineral Intensity:A Case Study of Dayingezhuang Gold Deposit[J]. Journal of China University of Mining and Technology,2014,43(2):345-350.
[10] Deng Jun, Wang Qingfei, Wan Li, et al. Random Difference of the Trace Element Distribution in Skarn and Marbles from Shizishan Orefield, Anhui Province,China[J]. Journal of China University of Geosciences, 2008, 19(4):319-326.
[11] Deng Jun, Wang Qingfei, Wan Li, et al. Self-Similar Fractal Analysis of Gold Mineralization of Dayingezhuang Disseminated-Veinlet Deposit in Jiaodong Gold Province, China[J]. Journal of Geochemical Exploration, 2009, 102(2):95-102.
[12] 李忠潭,薛林福,冉祥金,等. 基于卷积神经网络的智能找矿预测方法:以甘肃龙首山地区铜矿为例[J]. 吉林大学学报(地球科学版),2021,51. doi:10.13278/j.cnki.jjuese.20210081. Li Zhongtan, Xue Linfu, Ran Xiangjin, et al. Intelligent Prospect Prediction Method Based on Convolutional Neural Network:A Case Study of Copper Deposits in the Longshoushan Area, Gansu Province[J]. Journal of Jilin University (Earth Science Edition),2021,51. doi:10.13278/j.cnki.jjuese.20210081.
[13] Turcotte D L. Fractals and Chaos in Geology and Geophysics[M]. Cambridge:Cambridge University Press, 1997:100-113.
[14] Schumann A Y, Kantelhardt J W. Multifractal Moving Average Analysis and Test of Multifractal Model with Tuned Correlations[J]. Physica A:Statistical Mechanics and Its Applications, 2011, 390(14):2637-2654.
[15] Xiong Gang, Zhang Shuning, Zhao Huichang. Multifractal Spectrum Distribution Based on Detrending Moving Average[J]. Chaos, Solitons & Fractals, 2014, 65:97-110.
[16] Chen Feier, Tian Kang, Ding Xiaoxu, et al. Finite-Size Effect and the Components of Multifractality in Transport Economics Volatility Based on Multifractal Detrending Mmoving Average Method[J]. Physica A, 2016, 462:1058-1066.
[17] Zhang Chen, Ni Zhiwei, Ni Liping, et al. Asymmetric Multifractal Detrending Moving Average Analysis in Time Series of PM2.5 Concentration[J]. Physica A, 2016, 457:322-330.
[18] Mali Provash, Mukhopadhyay Amitanha, Singh Gurmukh. Multifractal Detrended Mmoving Average Analysis of Particle Density Functions in Relativistic Nuclear Collisions[J]. Physica A, 2016, 450:323-332.
[19] 张佳佳,王建,李研,等. 黑龙江多宝山-铜山斑岩铜(钼)矿床绿帘石矿物成分特征及其成矿指示意义[J]. 世界地质,2019,38(2):362-377. Zhang Jiajia, Wang Jian, Li Yan, et al. Mineral Composition of Epidote in Duobaoshan-Tongshan Porphyry Cu-Mo Deposit,Heilongjiang and Its Implications for Mineralization[J]. Global Geology, 2019,38(2):362-377.
[20] 侯增谦,杨志明. 中国大陆环境典型斑岩型矿床成矿规律和找矿模型研究进展[J]. 矿床地质, 2012,31(4):645-646. Hou Zengqian, Yang Zhiming. Progress in Metallogenic Regularity and Prospecting Models of Typical Porphyry Deposits in Chinese Mainland[J]. Minreal Deposits, 2012, 31(4):645-646.
[21] Sun Weidong, Huang Ruifan, Li He, et al. Porphyry Deposits and Oxidized Magmas[J]. Ore Geology Reviews, 2014, 65:97-131.
[22] Liang Huaying, Sun Weidong, Su Wenchao, et al. Porphyry Copper-Gold Mineralization at Yulong,China,Promoted by Decreasing Redox Potential During Magnetite Alteration[J]. Economic Geology, 2009, 104:587-596.
[23] Gu Gaofeng, Zhou Weixing. Detrending Moving Average Algorithm for Multifractals[J]. Physical Review E, 2010, 82(1):011136.
[24] Agterberg Frits. New Applications of the Model of de Wijs in Regional Geochemistry[J]. Mathemtical Geology, 2007, 39(1):1-25.
[25] Deng Jun, Wang Qingfei, Li Gongjian, et al. Tethys Tectonic Eevolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region,SW China[J]. Gondwana Research, 2014, 26(2):419-437.
[26] Deng Jun, Wang Qingfei, Li Gongjian, et al. Cenozoic Tectono-Magmatic and Metallogenic Processes in the Sanjiang Region, Southwestern China[J]. Earth-Science Reviews, 2014, 138:268-299.
[27] Deng Jun, Wang Qingfei, Li Gongjian, et al. Structural Control and Genesis of the Oligocene Zhenyuan Orogenic Gold Deposit, SW China[J]. Ore Geology Reviews, 2015, 65:42-54.
[28] 李文昌, 曾普胜. 云南普朗超大型斑岩铜矿特征及成矿模型[J]. 成都理工大学学报(自然科学版), 2007,34(4):436-446. Li Wenchang, Zeng Pusheng. Characteristics and Metallogenic Model of Pulang Superlarge Porphyry Copper Deposit in Yunnan, China[J]. Journal of Chengdu University of Technology (Sciencec & Technology Edition), 2007,34(4):436-446.
[29] 李文昌,刘学龙,曾普胜,等. 云南普朗斑岩型铜矿成矿岩体的基本特征[J]. 中国地质,2011,38(2):403-414. Li Wenchang, Liu Xuelong, Zeng Pusheng, et al. The Characteristics of Metallogenic Rock in the Pulang Porphyry Copper Deposit in Yunnan,China[J]. Grology in China, 2011,38(2):403-414.
[30] 胡清华,张世权,尹静,等. 中甸普朗斑岩型铜矿床围岩蚀变初步研究[J]. 矿物岩石地球化学通报, 2010, 29(2):192-201. Hu Qinghua, Zhang Shiquan, Yin Jing, et al. A Study of Wall-Rock Alteration in the Zhongdian Pulang Porphyry Copper Deposit[J]. Bulletin of Minearlogy, Petrology and Geochemistry, 2010, 29(2):192-201.
[31] Kantelhardt Jan W, Zschiegner Stephan A, Koscielny-Bunde E, et al. Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series[J]. Physica A, 2002, 316:87-114.
[1] Wan Li, Deng Xiaocheng, Wang Qingfei, Liu Huan. Identification of Mineral Intensity Based on Hurst Index in Dayin’gezhuang Gold Deposit, Shandong Province, China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 87-92.
[2] Jia Dacheng,Jiang Tao,Chen Shengbo,Bao Guozhang,Gao Wen,Zhang Xiao,Mao Yongxin. Characteristics and Prospecting Significance of the Phytogechemistry in Duobaoshan Cupper Metallogenic Field,Daxing’anling Area,NE China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 76-86.
[3] LOU De-bo, XIAO Ke-yan, ZUO Ren-guang, JIA Jin-dian. Application of Singularity Mapping Technique on Identifying Local Anomalies by Debris Geochemical Data-A Case Study from Huangshan-Jingerquan Ni-Cu Belt in Eastern Tianshan, Xinjiang, Western China [J]. J4, 2012, 42(3): 705-714.
[4] ZHANG Jin-hui, SUN Jian-guo. Treatment of Singularity in Integration Equations for 3D D.C. Electrical Field [J]. J4, 2009, 39(5): 923-928.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[2] WANG Qian, WU Zhi-fang, ZHANG Han-quan, MO Xiu-wen. The Application of Statistical Fractals to Describing the Reservoir Heterogeneity[J]. J4, 2005, 35(03): 340 -0345 .
[3] YANG Xiao-ping, LI Yang-chun,LIU Zhen, WANG Yan, WANG Hong-jie. Classification of Tectonic Sequence and Dynamic Evolution of Jixi Basin, Eastern Heilongjiang Province[J]. J4, 2005, 35(05): 616 -621 .
[4] XUE Yong-chao,CHENG Lin-song,FU Guang. Comprehensive Evaluation of Gas Sealing Ability of the Lower DengloukuFormation (K1d2) Mudstone Caprock in the East of the Daqing Placanticline[J]. J4, 2005, 35(05): 626 -631 .
[5] LIU Jing-hua,WANG Zhu-wen, LIU Shu-tian, WANG Xiao-li. The Evaluation Method of Soil Radon and Mercury Gas Measurement about Urban Active Fault Zones[J]. J4, 2006, 36(02): 295 -0297 .
[6] LIU Xiang. Sequence and Distribution of the Pyroclastic Deposits of the Greatest Eruption of Changbaishan Volcano During the Period of History[J]. J4, 2006, 36(03): 313 -318 .
[7] ZHENG Kun,LIU Xiu-guo,WU Xin-cai,YANG Hui. A TopologyConcerned and EntityOriented 3D Vector Data Model[J]. J4, 2006, 36(03): 474 -479 .
[8] YIN Pan, HU Guang-dao. Spatial Data Fusion in Geological Data Warehouse[J]. J4, 2006, 36(03): 486 -490 .
[9] KONG Qing-ying,CHENG Ri-hui,HU Yan-fei. Types of Sedimentary Facies and Sequence Stratigraphy, Early Cretaceous in Tanzhuang-Shenqiu Depression of Zhoukou Sag[J]. J4, 2006, 36(04): 557 -562 .
[10] CHI Bao-ming, YI Shu-ping, LI Zhi-jun, ZHOU Yan-zhang. Water Resources’ Artificial Regulation in Dalian Area[J]. J4, 2005, 35(05): 632 -635 .