Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (5): 1381-1390.doi: 10.13278/j.cnki.jjuese.20200238

Previous Articles     Next Articles

Direct Shear Test of Soil Interfacial Layer Under Dynamic and Static Load

Cao Haiying1,2, Guo Yilei1,2, Du Liang3   

  1. 1. Key Laboratory of Green Construction and Intelligent Maintenance for Civil Engineering of Hebei Province, Yanshan University, Qinhuangdao 066004, Hebei, China;
    2. School of Civil Engineering and Mechanics, Yanshan University, Qinhuangdao 066004, Hebei, China;
    3. Beijing Aidi Geological Investigation Foundation Construction Company, Beijing 100043, China
  • Received:2020-10-04 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Natural Science Foundation of Hebei Province (E2020203168), the Science and Technology Research Project of Hebei Universities (ZD2020330) and the Science and Technology Research and Development Project of Qinhuangdao City(202005A005)

Abstract: To explore the mechanical properties of soil interfacial layers and their change law, the silt, silty clay, and gravel soil were taken as the experimental material, and the normal stress, soil type, interface treatment, load type, and effective time of dynamic load were taken as test variable factors. By using the orthogonal experimental design method, the indoor direct shear test of different undisturbed and remolded soil samples were carried out, and the shear force-displacement constitutive curves of soil interfacial layers were obtained. The bond coefficient of the interfacial layer was calculated according to the peak shear strength in these curves, which is related to the ability of resisting distruction. The experimental results show that the bond coefficient of silt is smaller than that of silty clay, and the strength of the soil interfacial layer is related to the combination type of the upper and lower soil layers;The greater the roughness of the interfacial layer and the more adequate the soil contact, the better the mechanical properties of the interfacial layer;With the increase of the acting time of the dynamic load, the strength of the soil interfacial layer decreases;The mechnanical properties of the interfacial layer are connected with the properties of the upper and lower soil layers.

Key words: soil interfacial layer, direct shear test, dynamic load, static load, constitutive curve, remolded soil

CLC Number: 

  • TU411.7
[1] 黄博, 史海栋, 凌道盛, 等. 两种粉质黏土的动、静强度特性对比研究[J]. 岩土力学, 2012, 33(3):665-673. Huang Bo, Shi Haidong, Ling Daosheng, et al. Comparisons of Static and Dynamic Behaviors Between Two Silty Clays by Test[J]. Rock and Soil Mechanics, 2012, 33(3):665-673.
[2] 曹海莹, 刘云飞, 李慧剑, 等. 上覆硬壳层软土路基土层界面动力响应特征及工程应用[J]. 公路交通科技, 2015, 32(7):33-40. Cao Haiying, Liu Yunfei, Li Huijian, et al. Dynamic Response Characteristic of Interface of Layer of Soft Soil Subgrade with Dry Crust Covering and Its Engineering Application[J]. Journal of Highway and Transportation Research and Development, 2015, 32(7):33-40.
[3] 黄茂松, 边学成, 陈育民, 等. 土动力学与岩土地震工程[J]. 土木工程学报, 2020, 53(8):64-86. Huang Maosong, Bian Xuecheng, Chen Yumin, et al. Soil Dynamics and Geotechnical Earthquake Engineering[J]. China Civil Engineering Journal, 2020, 53(8):64-86.
[4] 殷殷, 张丙印, 袁会娜, 等. 接触面直剪试验及数值模拟分析[J]. 水利发电学报, 2018, 37(6):84-92. Yin Yin, Zhang Bingyin, Yuan Huina, et al. Experimental and Numerical Study on Interface Direct Shear Tests[J]. Journal of Hydroelectric Engineering, 2018, 37(6):84-92.
[5] 闫澍旺, 林澍, 贾沼霖, 等. 海洋土与钢桩界面剪切强度的大型直剪试验研究[J]. 岩土工程学报, 2018, 40(3):495-501. Yan Shuwang, Lin Shu, Jia Zhaolin, et al. Large-Scale Direct Shear Tests on Shear Strength of Interface Between Marine Soil and Steel Piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3):495-501.
[6] Wu S, Chen H, Zhang J, et al. Effects of Interlayer Bonding Conditions Between Semi-Rigid Base Layer and Asphalt Layer on Mechanical Responses of Asphalt Pavement Structure[J]. International Journal of Pavement Research and Technology, 2017(5):274-281.
[7] Wang X D, Pei Q Q, Guo Q L, et al. Stress Mechanism for the Rammed Layer Interfaces of Earthen Heritage Sites with Different Treatments[J]. Journal of Cultural Heritage, 2019, 30:110-119.
[8] 毕冬宾, 尤志嘉, 刘群, 等. 土层锚固体复合界面单元形式及力学效应研究[J]. 岩土力学, 2017, 38(1):277-283. Bi Dongbin, You Zhijia, Liu Qun, et al. Soil Anchor Solid Composite Interface Elenment Form and Mechanical Effects[J]. Rock and Soil Mechanics, 2017, 38(1):277-283.
[9] Kock I, Huhn K. Influence of Particle Shape on the Frictional Strength of Sediments:A Numerical Case Study[J]. Sedimentary Geology, 2007, 196(14):217-233.
[10] 张嘎, 张建民. 粗粒土与结构接触面统一本构模型及试验验证[J]. 岩土工程学报, 2005, 27(10):1175-1179. Zhang Ga, Zhang Jianmin. Unified Modeling of Soil-Structure Interface and Its Test Confirmation[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10):1175-1179.
[11] Beskou N D, Theodorakopoulos D D. Dynamic Effects of Moving Loads on Road Pavements:A Review[J]. Soil Dynamics and Earthquake Engineering, 2011, 31:547-567.
[12] Beskou N D, Chen Y Y, Qian J. Dynamic Response of an Elastic Plate on a Cross-Anisotropic Elastic Half-Plane to a Load Moving on Its Surface[J]. Transportation Geotechnics, 2018, 14:98-106.
[13] 夏红春, 周国庆, 杜泽超. 土-地下结构界面层效应试验研究[J]. 中国矿业大学学报, 2011, 40(6):846-851. Xia Hongchun, Zhou Guoqing, Du Zechao. Experimental Study of the Soil-Undergroud Structure Interfacial Layer Effect[J]. Journal of China University of Mining & Technology, 2011, 40(6):846-851.
[14] 孙厚超, 杨平, 王国良, 等. 冻土与结构接触界面层力学试验系统研制及应用[J]. 岩土力学, 2014, 35(12):3636-3643. Sun Houchao, Yang Ping, Wang Guoliang, et al. Development of Mechanical Experimental System for Interface Layer Between Frozen Soil and Structure and Its Application[J]. Rock and Soil Mechanics, 2014, 35(12):3636-3643.
[15] 刘开富, 许家培, 周青松, 等. 土工格栅-土体界面特性大型直剪试验研究[J]. 岩土工程学报, 2019, 41(增刊1):185-188. Liu Kaifu, Xu Jiapei, Zhou Qingsong, et al. Large-Scale Direct Shear Tests on Properties of Geogrid-Soil Interfaces[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Sup. 1):185-188.
[16] 张明义, 白晓宇, 高强, 等. 黏性土中桩-土界面受力机制室内试验研究[J]. 岩土力学, 2017, 38(8):2167-2174. Zhang Mingyi, Bai Xiaoyu, Gao Qiang, et al. Experimental Study on Interfacial Bearing Mechanism of Piles in Cohesive Soil[J]. Rock and Soil Mechanics, 2017, 38(8):2167-2174.
[17] Robert D J, Yang A, Senthilkumar M, et al. Cyclic Loading Response of Offshore Pipelines Using Simple Shear Tests[J]. Soil Dynamics and Earthquake Engineering, 2020, 130.
[18] Ge Q, Xiong F, Xie L W, et al. Dynamic Interaction of Soil-Structure Cluster[J]. Soil Dynamics and Earthquake Engineering, 2019, 123:16-30.
[19] 公路土工试验规程:JTG E40-2007.[S]. 北京:人民交通出版社, 2007. Test Methods of Soils for Highway Engineering:JTG E40-2007[S]. Beijing:China Communications Press, 2007.
[20] Clough G W, Duncan J M. Finite Element Analysis of Retaining Wall Behavior[J]. Journal Soil Mech & Found Div ASCE, 1971, 97(12):1657-1674.
[21] 刘学增, 朱合华. 上海典型土层与混凝土接触特性的试验研究[J]. 同济大学学报(自然科学版), 2004, 32(5):46-51. Liu Xuezeng, Zhu Hehua. Experiment on Interaction Between Typical Soils in Shanghai and Concrete[J]. Journal of Tongji University(Natural Science), 2004, 32(5):46-51.
[22] 冯德成, 宋宇. 沥青路面层间结合状态试验与评价方法研究[J]. 哈尔滨工业大学学报, 2007, 39(4):128-132. Feng Decheng, Song Yu. Study of Test and Evaluation Method on Interfacial Combining State of Asphalt Pavement[J]. Journal of Harbin Institute of Technology, 2007, 39(4):128-132.
[23] 曹海莹, 杜量, 徐珊, 等. 运营期上硬下软型双层地基动力损伤评价[J]. 公路交通科技, 2020, 37(4):37-46. Cao Haiying, Du Liang, Xu Shan, et al. Evaluation of Dynamic Damage of Two-Layer Subgrade with Upper Dry Crust and Lower Soft Soil Layer in Operation Period[J]. Journal of Highway and Transportation Research and Development, 2020, 37(4):37-46.
[24] 周丹, 马泽欣, 刘黎萍, 等. 基于足尺加速加载试验的现役沥青路面疲劳特性研究[J]. 公路交通科技, 2020, 37(1):17-24. Zhou Dan, Ma Zexin, Liu Liping, et al. Study on Fatigue Performance of In-Service Asphalt Pavement Based on Full-Scale Accelerated Loading Test[J]. Journal of Highway and Transpotation Research and Development, 2020, 37(1):17-24.
[25] 公路工程技术标准:JTG B10-2014.[S]. 北京:人民交通出版社, 2014. Techinical Standard of Highway Engeering:JTG B10-2014[S]. Beijing:China Communications Press, 2014.
[26] 明添学, 杨清标, 李蓉, 等. 滇西加里东期平河复式花岗岩体皓石U-Pb年龄、Hf同位素特征及其风化壳型稀土矿成矿认识[J]. 吉林大学学报(地球科学版), 2020, 50(6):1687-1702. Ming Tianxue, Yang Qingbiao, Li Rong, et al. Zircon U-Pb Age and Hf Isotope Characteristics of Caledonian Pinghe Composite Granite Pluton:Its Mineralization of Granite Weathering Crust Type REE Deposit[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1687-1702.
[27] 彭游博, 刘文彬, 赵军, 等. 辽南岩体LA-ICP-MS皓石U-Pb年龄、岩石地球化学特征及其地质意义:以盖州万福一岫岩龙潭地区三叠纪侵入岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(6):1737-1751. Peng Youbo, Liu Wenbin, Zhao Jun, et al. Geochemical Characteristic, LA-ICP-MS Zircon U-Pb Dating and Geological Significance of South Liaoning Pluton:A Cace Study of Triassic Pluton in Gaizhou Wanfu-Xiuyan Longtan Area[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6):1737-1751.
[28] 王淑云, 楼志刚. 原状和重塑海洋黏土经历动载后的静强度衰减[J]. 岩土力学, 2000, 21(1):20-23. Wang Shuyun, Lou Zhigang. The Degradation of Undrained Shear Strength of Undisturbed and Remolded Marine Clay After Cyclic Loading[J]. Rock and Soil Mechanics, 2000, 21(1):20-23.
[29] Wang Haojie, Sun Ping, Liu Enlong, et al. Dynamic Properties of Tianshui Saturated Remolded Loess:A Laboratory Study[J]. Engineering Geology, 2020, 272:1-13.
[1] Hong Yong, Li Zirui, Tang Shaoshuai, Wang Luyang, Li Liang. Effect of Average Particle Size on Shear Properties of Sand and Its Mesomechanical Analysis [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1814-1822.
[2] PAN Hong-xun,FANG Wu-bao. Parallel Computing Strategy Based on PC Cluster for Wave Equation Prestack Depth Migration [J]. J4, 2008, 38(4): 708-0712.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIAO Chang-lai , ZHANG Li-chun ,FANG Zhang ,JIA Tao. Research on Transform Relationship Between Surface Water and Groundwater in Taoer River Fan[J]. J4, 2006, 36(02): 234 -0239 .
[2] ZHANG Hui,LI Tong-lin,DONG Rui-xia. 3D Electromagnetic Inversion by Volume Integral Equation Method Based on Current Dipole Source[J]. J4, 2006, 36(02): 284 -0288 .
[3] ZHANG Fan-qin,WANG Wei-feng,WANG Jian-wei,SUN Fen-jin,LIU Rui-e. Dissolution of Tuff Filling and Its Effects on the Porosity of the Coalformed Gas Reservoir in the Suligemiao Area of the Ordos Basin[J]. J4, 2006, 36(03): 365 -369 .
[4] HUO Qiu-li, WANG Zhen-ying, LI Min,FU Li,FENG Da-chen. Study on the Source and Migration of Oil and Gases in the Beier Depression in the Hailaer Basin[J]. J4, 2006, 36(03): 377 -383 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .
[8] ZHAO Feng,FAN Hai-feng,TIAN Zhu-jun, WANG Zhi-gang. Analysis of Different Land Use Patterns and Soil Erosion Change in the Middle of Jilin Province[J]. J4, 2005, 35(05): 661 -666 .
[9] JIANG Xiao-yi, ZHOU Yun-xuan. From Space to Time-A Research on SpatioTemporal Data Model[J]. J4, 2006, 36(03): 480 -485 .
[10] GAO Zhi-qian, FAN Tai-liang, LI Yan, LIU Wu-hong, CHEN Yu-lin. Study on Eustatic SeaLevel Change Rule in Cambrian-Ordovician in Tarim Basin[J]. J4, 2006, 36(04): 549 -556 .