Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (5): 1560-1569.doi: 10.13278/j.cnki.jjuese.20200296
Previous Articles Next Articles
Su Liang1, Shi Wei1, Shui Weihou2, Cao Jianmeng3
CLC Number:
[1] 王铁宏, 水伟厚. 强夯技术与节能环保[J]. 节能与环保, 2005(11):10-13. Wang Tiehong, Shui Weihou. Dynamic Compaction and Environmentally Friendly[J]. Energy Conservation & Environmental Protection, 2005(11):10-13. [2] 王铁宏, 水伟厚, 王亚凌.对高能级强夯技术发展的全面与辩证思考[J]. 建筑结构, 2009, 39(11):86-89. Wang Tiehong, Shui Weihou, Wang Yaling. Thinking of High Energy Level Dynamic Compaction Application and Development[J]. Building Structures, 2009, 39(11):86-89. [3] 李连祥, 符庆宏, 郑英杰, 等. 中国强夯三十年[J]. 工业建筑, 2015(增刊1):8. Li Lianxiang, Fu Qinghong, Zheng Yingjie, et al. The Past Thirty of Dynamic Compaction in China[J]. Industrial Construction, 2015(Sup.1):8. [4] 年廷凯, 水伟厚, 李鸿江, 等. 沿海碎石回填地基上高能级强夯系列试验对比研究[J]. 岩土工程学报, 2010, 32(7):1029-1034. Nian Tingkai, Shui Weihou, Li Hongjiang, et al. Field Tests of High Energy Dynamic Compaction on Foundation Backfilled by Crushed Stone in Coastal Area[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7):1029-1034. [5] 年廷凯, 李鸿江, 杨庆, 等. 不同土质条件下高能级强夯加固效果测试与对比分析[J]. 岩土工程学报, 2009, 31(1):139-144. Nian Tingkai, Li Hongjiang. Yang Qing. et al. Improvement Effect of High Energy Dynamic Compaction Under Complicated Geological Conditions[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(1):139-144. [6] 贾敏才, 刘波, 周训军. 滨海含软土夹层粉细砂地基高能级强夯加固试验研究[J]. 建筑结构学报, 2019, 40(11):240-246. Jia Mincai, Liu Bo, Zhou Xunjun. Field Test Study of High Energy Dynamic Compaction on Marine Silty Fine Sand Deposits with Soft Interlayers[J]. Journal of Building Construction, 2019, 40(11):240-246. [7] 建筑地基处理技术规范:JGJ 79-2012[S]. 北京:中国建筑工业出版社, 2012. Technical Code for Ground Treatment of Building:JGJ 79-2012[S]. Beijing:China Architecture & Building Press, 2012. [8] 闫续屏, 吕和蔼. 超高能级强夯法处理人工冲填填海地基[J]. 施工技术, 2013, 42(19):80-84. Yan Xuping, Lü Heai. Dynamic Compaction with Ultra-High Energy on Artificial Filling-Sea Subsoil[J]. Construction Technology, 2013, 42(19):80-84. [9] 赵家琛, 吕江, 赵晖, 等. 高能级强夯处理抛填路基的有效加固深度[J/OL].土木与环境工程学报, 2021.doi:10.11835/j.issn.2096-6717.2020.091. Zhao Jiachen, Lü Jiang, Zhao Hui, et al. Effective Reinforcement Depth of High Energy Dynamic Compaction for Filled Subgrade[J/OL]. Journal of Civil and Environmental Engineering, 2021.doi:10.11835/j.issn.2096-6717.2020.091. [10] 洪勇, 李子睿, 唐少帅, 等.平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6):1814-1822. Hong Yong, Li Zirui, Tang Shaoshuai, et al. Effect of Average Particle Size on Shear Properties of Sand and Its Mesomechanical Analysis[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6):1814-1822. [11] 水伟厚, 王铁宏, 王亚凌. 碎石回填地基上10000kN·m高能级强夯标准贯入试验[J]. 岩土工程学报, 2006, 28(10):1309-1312. Shui Weihou, Wang Tiehong, Wang Yaling. SPT for Dynamic Compaction with 10000 kN·m High Energy on Foundation Backfilled with Crushed Stone[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(10):1309-1312. [12] 工程地质手册编委会.工程地质手册[M]. 5版.北京:中国建筑工业出版社, 2018. Geological Engineering Handbook Editorial Board. Geological Engineering Handbook[M]. 5th ed. Beijing:China Architecture & Building Press, 2018. [13] 王铁宏, 水伟厚, 王亚凌, 等.强夯法有效加固深度的确定方法与判定标准[J]. 工程建设标准化, 2005(3):27-38. Wang Tiehong, Shui Weihou, Wang Yaling, et al. The Definite Method and Decision Criterion on Effective Depth of Dynamic Compaction Improvement[J]. Standardization of Engineering Construction, 2005(3):27-38. [14] 建筑地基检测技术规范:JGJ 340-2015[S]. 北京:中国建筑工业出版社, 2015. Technical Code for Testing of Building Foundation Soils:JGJ 340-2015[S]. Beijing:China Architecture & Building Press, 2015. [15] 闫续屏, 安明. 高水位地基强夯机理及关键施工技术[J]. 施工技术, 2015, 44(1):81-83. Yan Xuping, An Ming. Construction Technology and Dynamic Compaction Mechanism of High Water Level Foundation[J]. Construction Technology, 2015, 44(1):81-83. |
No related articles found! |
|