Journal of Jilin University(Earth Science Edition) ›› 2023, Vol. 53 ›› Issue (4): 1149-1162.doi: 10.13278/j.cnki.jjuese.20210382

Previous Articles     Next Articles

Possible Problems of Groundwater Evrionment  in the Exploitation of Geothermal Energy

Xu Tianfu, Chen Jingyi,Feng Bo, Jiang Zhenjiao   

  1. Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China

  • Received:2021-11-26 Online:2023-07-26 Published:2023-08-10
  • Supported by:
    the National Key R&D Program of China (2018YFB1501803)

Abstract: Geothermal energy exploitation and utilization are closely related to groundwater transport and the evolution of water environment. In this study, wereviewed the development status and typical mining technologies for the shallow geothermal energy stored in the soil and phreatic aquifers, median-to-high-temperature geothermal energy in deep aquifers, and high-temperature geothermal energy stored in the hot dry rocks for informational purposes of sustainable development and utilization of large-scale geothermal resources. In particular, the shallow geothermal energy can be classified into ground source heat pump and ground water heat pump according to the subsurface heat source; Median-to-high-temperature geothermal energy can be exploited mainly by direct mining, combination of production and injection and standing column well system; And high-temperature geothermal energy can be exploited using enhanced geothermal systems (EGS) through reservoir reconstruction technique such as hydraulic fracturing or chemical stimulation. Furthermore, the potential impact of geothermal energy exploitation on the groundwater resources was analyzed and summarized following the reported site cases, mainly focused on the cold and heat accumulation brought by heat pump technology, the decline of groundwater level caused by hydrothermal exploitation and the possibility of microseismic events or fracturing fluid leakage caused by hydraulic fracturing of hot dry rocks. In the end, the approaches were proposed to promote the sustainable development of geothermal resources and reduce the negative impacts on groundwater resources, including improving the recharge capacity, maintaining the water balance in the process of mining and irrigation, maintaining the heat exchange efficiency and the re-balance of underground heat, and adopting new materials. 

Key words: geothermal energy, mining technology, groundwater environment, prevention approaches, sustainable development and utilization

CLC Number: 

  • P314
[1] Luo Yishan, Li Zhao. Statistical Evaluation of Impact of Coalbed Methane Exploitation on Groundwater Environment in Qinshui Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 516-525.
[2] WANG Nan, CAO Jian-feng, ZHAO Ji-chang, LI Shu-guang. Suitability Evaluation of the Shallow Geothermal Energy Development and Utilization in Changchun District City [J]. J4, 2012, 42(4): 1139-1144.
[3] CHEN Rui-jun, LI Yuan-Yuan, JIA Zhi. Recoverable Analysis of Geothermal Resources in Dongying Formation of Banqiao Depression through TR21-Hole Pumping Test [J]. J4, 2010, 40(1): 56-60.
[4] JIANG Ji-yi, ZHANG Yu-dong, GU Hong-biao, ZUO Lan-li. Study on the Evaluation Model of Groundwater Environment Evolution Pattern Based on Grey Correlation Entropy [J]. J4, 2009, 39(6): 1111-1116.
[5] LIN Xue-yu, LIAO Zi-sheng,SU Xiao-si, QIAN Yun-ping. Groundwater Resources and Their Countermeasures of Development and Utilization in Yellow River Basin [J]. J4, 2006, 36(05): 677-684.
[6] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks [J]. J4, 2005, 35(03): 356-0360.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .