Journal of Jilin University(Earth Science Edition) ›› 2022, Vol. 52 ›› Issue (5): 1610-1625.doi: 10.13278/j.cnki.jjuese.20220034

Previous Articles     Next Articles

Genesis of Chang’an Gold Deposit in Ailaoshan Metallogenic Belt: Constraints from Geological Characteristic, Fluid Inclusion Thermometer and H-O-S-Pb Isotope

Xin Wei1,Meng Yuanku1, Xu Zhihe2, Sun Fengyue3, Qian Ye3   

  1. Technology, Qingdao 266590, Shandong,China 

    2. College of Earth Sciences, Institute of Disaster Prevention, Sanhe 065201,HebeiChina 

    3. College of Earth Sciences, Jilin University, Changchun 130061, China

  • Received:2022-02-20 Online:2022-09-15 Published:2022-10-10

Abstract:  The genetic mechanism of Chang’an gold deposit in the southern section of  Ailaoshan metallogenic belt in Southwest China remains to be restricted. To understand the source of ore-forming materials and fluids, and to illustrate its genetic type of deposit could provide a basis for the mine prospecting and reserve increasing. In this paper, the source and evolution of metallogenic materials and fluids in Chang’an gold deposit are studied based on detailed geological features, ore H-O-S-Pb isotope analysis and temperature measurement of fluid inclusions, and then the genesis of the deposit is restricted and the metallogenic model is established. The results show that the near-SN-trending F6 considered by predecessors is not a fault, but a cryptoexplosive breccia tube, which is the main ore hosting structure of Chang’an gold deposit. In the main metallogenic stage, the freezing point temperature of the inclusions is mostly -2.9--0.7 ℃, the corresponding salinity (w (NaCl)) is 1.22%-4.79%, and the homogenization temperature is 162-226 ℃, which belongs to the low temperature and low salinity fluid system. The δ18OH2O of quartz in the main metallogenic stage is between 4.4‰ and 5.2‰, and the δD is -93.9‰--85.9‰, which falls between the evolution line of magmatic water and atmospheric water, indicating that the ore-forming fluid is a mixture of magmatic fluid and atmospheric water. The averageδ34S of pyrite in Chang’an gold deposit is 2.1‰ (n = 32), most of which are between 0.0 and 3.6‰, with obvious characteristics of magmatic sulfur suggesting that S comes from magmatic rocks. The lead isotopic composition of pyrite has obvious duality, reflecting the dual contribution of magmatic and upper crustal surrounding rocks. Therefore, it is considered that the ore-forming materials and fluids are mainly derived from magma, and the later atmospheric water and surrounding rocks also contribute to the metallogenic fluids. Chang’an gold deposit, which has similar characteristics to low-sulfidation epithermal gold deposits, is dominated by cryptoexplosive breccias, although its surrounding rocks are not traditional volcanic rocks.

Key words: Ailaoshan metallogenic belt, Chang’an gold deposit, fluid inclusion, H-O-S-Pb isotope, metallogenic model

CLC Number: 

  • P59
[1] Xu Qinglin, Sun Fengyue, Li Bile, Yang Yanqian. Characteristics of Ore-Forming Fluids and Metallogenic Model of the Halongxiuma Molybdenum Polymetallic Deposit in East Kunlun, Qinghai Province [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(5): 1512-1524.
[2] Tang Mingying, Zhu Dequan, Ding Zhengjiang, Chen Jian, Wang Weixiao, Dong Zhenkun, Gao Zhenhua, Miao Xiaojun, Zheng Chenglong. Fluid Inclusions, Stable Isotope Characteristics and Geological Significance of  Aritekeshan Porphyry Cu-Mo Deposit in  Northern Qaidam Basin [J]. Journal of Jilin University(Earth Science Edition), 2022, 52(5): 1525-1539.
[3] Han Qiang, Yun Lu, Jiang Huashan, Shao Xiaoming, Jin Xianmei. Marine Oil and Gas Filling and Accumulation Process in the North of Shuntuoguole Area in Northern Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 645-658.
[4] Sun Yonggang, Li Bile, Sun Fengyue, Dong Junlin, Qian Ye, Yao Zhen. Genesis of M9 Ore Body of Basihu Pb-Zn Deposit in Qinghai Province: Constraints of Fluid Inclusions and H-O-S Isotopic Evidences [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1373-1386.
[5] Liu Zhong, Chen Haifeng, Zhang Huaidong, Wang Bohua. “Trinity” Metallogenic Characteristics and Prospecting Prediction of Pb-Zn Deposits in Shapinggou Integrated Exploration Area of Jinzhai, Anhui Province [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1539-1551.
[6] Dong Zhiguo, Zhang Lianchang, Dong Feiyu, Zhang Banglu, Xie Yueqiao, Zha Bin, Peng Zidong, Wang Changle. Geological Characteristics, Ore-Controlling Factors and Metallogenic Model of Muhu Manganese Deposit in West Kunlun, China [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1358-1372.
[7] Zhang Lianchang, Zhang Banglu, Dong Zhiguo, Xie Yueqiao, Li Wenjun, Peng Zidong, Zhu Mingtian, Wang Changle. Tectonic Setting and Metallogenetic Conditions of Carboniferous Malkansu Giant Manganese Belt in West Kunlun Orogen [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1340-1357.
[8] Fan Yuanyuan, Liu Yunhua, Yu Xiaofei, Zhao Qiang, Li Xiaoyan, Deng Nan, Ma Yuanhao. Geochemical Characteristics and Genesis of Jinkengzi Gold Deposit in Wudu Area, Gansu Province [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(5): 1404-1417.
[9] Wang Yongjun, Liu Yan, Huang Xin, Xu Chang, Shen Lijun, Zhang Yezhi, Zhang Zhaomin. Characteristics of Ore-Forming Fluids and Geological Significance of Fanjiazhuang Gold Deposit in Muping-Rushan Metallogenic Belt, Jiaodong Peninsula [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(4): 1012-1028.
[10] Liang Xiaolong, Sun Jinggui, Qiu Dianming, Xu Zhitao, Gu Xiaoli, Ren Zening. Genesis of Biliya Valley Ag-Pb-Zn Polymetallic Deposit on Western Slope of Great Xing'an Range [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 781-799.
[11] Sun Fengyue, Wang Rui, Wang Yicun, Li Shunda, Wang Keyong, Shi Kaituo, Sun Qingfei, Wang Wenyuan. Origin, Evolution of Ore-Forming Fluids and Metallogenic Mechanism of Nianzigou Molybdenum Deposit, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(3): 768-780.
[12] Zhao Yingdong. Salinity Analysis and Application of Fluid Inclusions: A Case Study of Fushan Sag [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1261-1269.
[13] Wu Meng, Li Yixin, Liu Guixiang. Characteristics of Ore-Forming Fluid and Genesis of Laozuoshan Gold Deposit, Heilongjiang [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(5): 1353-1364.
[14] Li Xiangwen, Zhang Zhiguo, Wang Keyong, Sun Jiapeng, Yang Jibo, Yang He. Characteristics of Ore-Forming Fluid and Genesis of Baoxinggou Gold Deposit in North of Great Xing'an Range [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1071-1084.
[15] Li Wenqiang, Guo Wei, Sun Shouliang, Yang Xuhai, Liu Shuai, Hou Xiaoyu. Research on Hydrocarbon Accumulation Periods of Palaeozoic Reservoirs in Bachu-Maigaiti Area of Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(3): 640-651.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!