Journal of Jilin University(Earth Science Edition) ›› 2024, Vol. 54 ›› Issue (1): 253-263.doi: 10.13278/j.cnki.jjuese.20220051

Previous Articles     Next Articles

Study on Water Restoration in the Dried-up River of the Fuyang River Basin Based on the SWAT Model#br#

Hong Mei1,2, Zhao Mingming1,2, Wei Tao1,2, Lin Haodong3   

  1. 1. College of New Energy and Environment, Jilin University, Changchun 130021, China
    2. National Local Joint Engineering Laboratory of Petrochemical Pollution Site Control and Remediation Technology, 
    Jilin University, Changchun 130021, China
    3. Taizhou Engineering Technology Center of Pollution Control, Taizhou 318000, Zhejiang,China
  • Received:2022-03-02 Online:2024-01-26 Published:2024-03-11
  • Supported by:
    the National Key Research and Development Program of China (2022YFC370220) and the National Science and Technology Major Project (2018ZX07111001)

Abstract: In order to achieve the goal of restoring water to the river as long as possible and to restore the basic ecological functions, a SWAT (soil and water assessment tool) hydrological model for the Fuyang River basin was established based on the current status of water conservation measures and water transfer projects. The different ecological water replenishment scenarios were designed, the variation of runoff volume and the restoration of the annual number of days with water were analyzed for different scenarios. Ecological restoration effects were analyzed based on the ecological base flow standard. The results show that the river ecological restoration effect is better in the water conservation scenario and the water transfer scenario in the Handan section of Fuyang River basin, and 184 days of water restoration from May to October can be achieved through the upstream water conservation measures and the scenario of 1.00×108 m3/a of supplemental annual water transfer, and the restored runoff volume of 3 486.7×104 m3/a, the water replenishment can reach the ecological baseflow standard and guarantee the basic ecological function of the river. The Xingtai section in the lower reaches of Fuyang River has less restored runoff under water-saving and water transfer scenarios, so the number of days with water in the river does not meet the standard, and it needs to supplement the external water transfer volume of 1.50×108 m3/a under the upstream water conservation condition to achieve the restoration of the annual number of days with water is 304 days and the restored runoff volume of 1 906.5×104 m3/a, and Xingtai section under the scenario of achieving the target of restoring water. The ecological replenishment scheme of increasing water transfer for single point replenishment in different periods needs to be considered as it cannot reach the ecological base flow standard of the river.

Key words: SWAT model, ecological water replenishment, water restoration, scenario analysis, Fuyang River basin

CLC Number: 

  • P641.1
[1] Hong Mei, Lin Haodong. Applicability of CMADS Precipitation Data in Reservoir Control Basin of Temperate East Asian Monsoon Climate Region: A Case Study of Chaobai River and Dongyang River Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 833-842.
[2] TANG Ji, YANG Wei, LI Zhao-yang, BIAN Jian-min, LIU Chang. Simulation on the Inflow of Agricultural Non-Point Sources Pollution in Dahuofang Reservoir Catchment of Liao River [J]. J4, 2012, 42(5): 1462-1468.
[3] YIN Xiong-rui, ZHANG Guang-xin, YANG Fan, XU Bin. Distributed Hydrological Modeling in Semi-Arid Region in Northeast China: A Case Study in the Taoer River Basin [J]. J4, 2011, 41(1): 137-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .