Journal of Jilin University(Earth Science Edition) ›› 2023, Vol. 53 ›› Issue (4): 1048-1065.doi: 10.13278/j.cnki.jjuese.20230001

Previous Articles     Next Articles

Complex Structural Characteristics and Evolution of Magmatic Diapirism Reformed Subsag: A Case of Lufeng 22 Subsag, Pearl River Mouth Basin

Wu Qiongling, Peng Guangrong, Xiao Zhangbo, Lei Yongchang, Shen Mengrong, Qiu Xinwei, Li Min   

  1. Shenzhen Branch of CNOOC China Limited, Shenzhen 518000, Guangdong, China

  • Received:2023-01-01 Online:2023-07-26 Published:2023-08-09
  • Supported by:
    the Major Science and Technology Project During the 14th Five-Year of CNOOC (KJGG-2022-0301) and the Prospective Basic Research Project of CNOOC (KJQZ-2023-2001)

Abstract: The Lufeng 22 subsag is a magmatic diapir reformed subsag in Dongsha uplift,Pearl River Mouth basin. In order to clarify the structural deformation characteristics and evolution process of such kind of subsag, the research reconstructed the evolution process of the study area based on the structural interpretation of seismic data, the analysis of residual stratum thickness, and the balanced profile technology. it is found that, The west slope and the east sub-depression of Lufeng 22 subsag was subjected to three stages of strong magmatic diapirism, and the most active diapri is in member 4 of Wenchang Formation. The effect of magma diapirism on the depression structure is mainly shown in three aspects. First, magma diapir destroyed the initial structural style of the subsag, caused the boundary fault to bend and even break, showed a characteristics of plane zoning; Second, the strong uplift of magma lead to the strong tilting of the strata, thus the gentle slope strata was greatly uplifted and subjected to strong denudation; Third, the magma diapir produced secondary bulge, which influenced the location, scale and evolution of the sedimentary center, thus showed a very complex structural characteristics and evolution process. The west slope and eastern subsag with strong magmatic diapirism only experienced evolution stages of fault-down thrown basin and faulted-sag basin, while the western subsag, high-in-sag and east slope with weak magmatic diapirism completely developed three evolution stages of fault-down thrown basin, faulted-sag basin and sag basin. The tectonic units showed lateral zoning characteristics.

Key words: magmatic diapirism, reformed sag, sag structure, structural evolution, Pearl River Mouth basin, Lufeng 22 subsag

CLC Number: 

  • P618.13
[1] Han Qiang, Yun Lu, Jiang Huashan, Shao Xiaoming, Jin Xianmei. Marine Oil and Gas Filling and Accumulation Process in the North of Shuntuoguole Area in Northern Tarim Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(3): 645-658.
[2] Liu Pei, Zhang Xiangtao, Lin Heming, Du Jiayuan, Feng Jin, Chen Weitao, Liang Jie, Jia Peimeng. Distribution Mechanism of Oil and Gas in Xijiang Main Depression of Pearl River Mouth Basin [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 52-64.
[3] Gao Xiang, Liu Zhihong, Nie Zhiyang, Yao Yong, Jia Wo, Wang Chao, Song Jian. Determination of Timing and Its Geological Significance of Daqing Placanticline in Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 74-83.
[4] Liu Zhihong, Sun Linan, Wang Chao, Gao Xiang, Song Jian, Huang Chaoyi, Mei Mei. Structural Features and Evolution of the Fulongquan Sag in Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 663-673.
[5] You Li,Zhang Yingzhao, Li Cai,Zhang Shaonan,Zhao Zhanjie. Based on Analysis of Sedimentary-Diagenetic Reservoir Facies to Determine “Sweet Spots” Distribution in Low Permeability from Wenchang 9 Area [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1432-1440.
[6] Li Xiaoping, Du Jiayuan, Ding Lin, Liu Jun, Chen Weitao, Chen Shuhui, Long Gengsheng, Wang Xiangshu. Origin of Mineral Series of Anhydrite-Limonite-Kaolinite-Dolomite and Its Paleoclimate Significance: An Example from Zhujiang Formation of Well LH-3 in Eastern Pearl River Mouth Basin [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 213-221.
[7] Zhang Cuimei, Zhao Zhongxian, Sun Zhen, Pang Xiong, Liu Baojun, Li Pengchun. Tectonic Evolution of Dongsha 25 Uplift in the Baiyun Sag,Pearl River Mouth Basin [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 57-66.
[8] Chen Duan-xin, Wu Shi-guo, Shi He-sheng, Zhao Shu-juan. Seismic Characteristics and Generations of Sinkholes in the Liuhua Carbonate Platform, Pearl River Mouth Basin [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1935-1943.
[9] Zheng Rong-cai, Li Yun, Dai Chao-cheng, Gao Bo-yu, Hu Xiao-qing, Wang Chang-yong. Depositional Features of Sandy Debris Flow of Submarine Fan in Zhujiang Formation, Baiyun Sag [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1581-1589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .