J4 ›› 2009, Vol. 39 ›› Issue (6): 991-997.

Previous Articles     Next Articles

Main Controlling Factors and Quantitative Model of Oil-Bearing of Complex Structural Trap in West Sag of Liaohe Depression

ZHANG Feng-qi1|2|PANG Xiong-qi3|WANG Zhen-liang1, LI Yong-xin4   

  1. 1.Department of Geology, Northwest University, Xi’an710069, China;2.School of Petroleum Resources, Xi’an Shiyou University, Xi’an710065, China;3.Basin &|Reservoir Research Center, China University of Petroleum, Beijing102249, China;4.Research Institute of Petroleum Exploration and Development, PetroChina, Beijing100083, China
  • Received:2009-03-18 Online:2009-11-26 Published:2009-11-26

Abstract:

In order to understand main controlling factors and quantitative characterization of oil-bearing of complex structural trap in west sag of Liaohe depression,the 103 complex structural traps were researched on the base of statistical analysis of geology and R-factor analysis. The results showed that the oil fullness degree of complex structural trap was controlled by the distances between the center of expulsion hydrocarbon and trap, the fluid potential energy, the thickness of caprock and sand body and the numbers of faults cutting the reservoir. The geological analysis showed that the oil fullness degree of the complex structural traps will benefit from the close distance from the center of expulsion hydrocarbon, the relatively low fluid potential energy and the thickness of sandrock in reservoir is less than fault throw and the fault throw is less than the thickness of mudstone in caprock. The comprehensive quantitative connection models between the oil fullness degree and the controlling factors of complex structural traps are established by using the methods of correlation analysis and multiple regression analysis. The 21 complex structural traps are predicted and the validation results of the forecast model indicate that the value of 80% forecast oil fullness degree of the trap is consistent to the real value.

Key words: complex structural trap, oil-bearing, main controlling factors, quantitative model, west sag of Liaohe depression, petroleum gas

CLC Number: 

  • P618.13
[1] Geng Xiaojie, Zhu Xiaomin, Dong Yanlei. Application of Seismic Sedimentology to Subaqueous Fan Complex Systems:A Case Study on Palaeogene He3 Section in Biyang Sag [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 57-64.
[2] Li Fulai, Wang Shitou, Miao Shunde, Yang Junxia, Xu Zhiyao, Li Wenshuai. Characteristics of Low Permeability Reservoirs and Main Controlling Factors of High Quality Reservoirs of Chang 63 Member in Huaqing Area [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1580-1588.
[3] Du Runlin, Liu Zhan. Gravity Anomaly Extraction for Hydrocarbon Based on Particle Swarm Optimization and Cellular Neural Network [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 926-933.
[4] Ren Xianjun,Shan Xuanlong,Wang Jianbo. Recognition of Oil Accumulation in Putaohua Oil Layer of the Shangjia Oilfield,Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(1): 38-44.
[5] Tao Chongzhi,Deng Chao,Bai Guoping,Wang Dapeng,Niu Xinjie,Bai Jianpu,Zheng Yan. A Comparison Study of Brazilian Campos and Santos Basins: Hydrocarbon Distribution Differences and Control Factors [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1753-1761.
[6] Liang Jianshe,Zhang Gongcheng,Wang Pujun,Xie Xiaojun. Tectonic Evolution of Epicontinental Basins in South China Sea and Their Feature of Source Rocks [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1309-1319.
[7] Zhao Jian, Tong Xiaoguang, Xiao Kunye, Dou Lirong, Ji Hancheng, Du Yebo, Yuan Zhiyun, Xiao Gaojie. Sedimentary-Diagenetic Characteristics of Reservoir Sandstone and Their Controlling Factors in Bongor Basin, Chad [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 649-658.
[8] Sun Haitao,Zhong Dakang,Wang Xingming. Characteristics and Significance of the Turbidite Lenticular Sandbody Diagenesis in Shahejie Formation, Zhanhua Depression [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 680-690.
[9] Wang Yanzhong, Cao Yingchang, Xi Kelai. New View on the Concept of Secondary Pore Developing Zones and Its Significance of Petroleum Geology [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 659-668.
[10] Ma Zhongzhen, Xie Yinfu, Zhang Zhiwei,Zhou Yubing,Wang Dandan. Salt Development Characteristics and Its Controlling on Hydrocarbon Accumulation in Eastern Margin of South America [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 360-370.
[11] Gong Jianming,Li Gang,Yang Chuansheng,Xu Xuehao,Zhang Jinwei,Wang Hairong, Xu Liming. Hydrocarbon Prospecting of Mesozoic Strata in Southern East China Sea Shelf Basin [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 20-27.
[12] Qu Xiyu, Yang Huidong, Liu Li, Liu Na, Qi Zan, Tang Hui. The Genesis and Its Impaction on Oil and Gas Reservoir of Oil-Associated CO2 in Southern Part of Songliao Basin [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 39-48.
[13] Wang Wei-ming,Deng Hai,Lu Shuang-fang,Xu Jian-jun,Wang Gui-lei,Chen Guo-hui. Relationship Between Single Dark Mudstone and High-Quality Hydrocarbon Source Rocks and Its Control on Accumulation in Fault Subsidence Basin:Taking Hailaer Basin as an Example [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(6): 1610-1616.
[14] LI Jun-hui. Sequence Architecture Pattern and PoolForming Pattern of Lower Cretaceous in Huhehu Depression [J]. J4, 2012, 42(4): 961-969.
[15] LIU Zong-bao, ZHAO Miao, LV Yan-fang, MA Shi-zhong, FANG Qing, GUO Xin. Formation Reduce Model and Govern Oil Significance of Putaohua Oil Layer in Sanzhao Depression|Songliao Basin [J]. J4, 2012, 42(4): 984-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!