Journal of Jilin University(Earth Science Edition)

Previous Articles     Next Articles

Stability Analysis of Gravelly Soil Landslide Using Multiple Properties Regression Model with One Variable

Zhi Momo1,Shang Yuequan1,Xu Xinghua2   

  1. 1.College of Civil Engineering and Architecture, Zhejiang University, Hangzhou310058,China ;
    2.Zhejiang Institute of Geologic and Mineral Resource, Hangzhou310007,China
  • Received:2012-09-19 Online:2013-05-26 Published:2013-05-26

Abstract:

In order to evaluate the stability of gravel soil landslide based on the geological exploration information and experiment result, a multiple property regression model with one variable was created. Seven influencing factors such as the gravity of sliding body, angle and length of sliding surface, hydraulic gradient, immersion area, cohesion and internal friction angle were selected to conduct the regression analysis of stability coefficient and the significant research on these factors by using the model based on observed data of 14 engineering geological profiles of Guanjia landslide. The regression equation for calculating the stability coefficient of slopes was obtained, and Xinchang Xiashan landslide was taken to evaluate the accuracy of the model. Research results indicated that there was an obvious regression of the equation which was established according to the linear regression model. So the model can be used to calculate and analyze the stability of landslides. Factors that have significant influence on stability coefficient were determined by this model, and combined with the actual geological conditions, it was found that groundwater has a significant impact on the stability of landslides, which provides some useful references for the early-warning and prediction of landslide hazards and effective engineering control measures. The condition of Xinchang Xiashan landslide is between stability and instability,  intensive monitoring should be carried out during heavy rainfall periods.

Key words: landslide, analysis of stability, multiple property regression model with one variable, early-warning and prediction, project management, slopes stability

CLC Number: 

  • P642.22
[1] Zhao Jintong, Niu Ruiqing, Yao Qi, Wu Xueling. Landslide Susceptibility Assessment Aided by SAR Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1182-1191.
[2] Tan Fulin, Hu Xinli, Zhang Yuming, He Chuncan, Zhang Han. Calculation Method of Landslide Thrust Considering Progressive Failure Process [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 193-202.
[3] Fu Jiankang, Luo Gang, Hu Xiewen. Physical Model Experiment on Overtopping Overflow Failure of Landslide Dam [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 203-212.
[4] Li Peng, Su Shengrui, Ma Chi, Huang Huang, Xu Jiwei. Formation Mechanism of Landslides with Accumulation Layer-Bedrock Contact Surface:Taking Zushimiao Landslide as an Example [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1471-1479.
[5] Wang Kongwei, Chang Delong, Li Chunbo, Hu Anlong, Wei Dong. Discourse About Landslide Groups:Take Three Gorges Reservoir Region as an Example [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1491-1501.
[6] Qin Shengwu, Ma Zhongjun, Liu Xu, Li Guangjie, Peng Shuaiying, Chen Junjun, Zhai Jianjian. Hazard Assessment of Collapse and Landslide Induced by Tianchi Volcano in Changbai Mountain Area Based on Simplified Newmark Displacement Model [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 826-838.
[7] Xu Zemin, Mei Xuefeng, Wang Lirong, Zhang Youwei, Zeng Qiang, Guo Lili. Precipitation Temporal and Variability of Landslide Early Warning Research: A Case Study on Touzhai Gully in Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 154-162.
[8] An Yuke, Wu Weijiang, Zhang Wen, Yao Qingqing, Song Jian, Zhang Honghong. Crack Control Design Method of Anti-Slide Pile and Engineering Application [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 171-178.
[9] Chen Jianping, Li Huizhong. Genetic Mechanism and Disasters Features of Complicated Structural Rock Mass Along the Rapidly Uplift Section at the Upstream of Jinsha River [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1153-1167.
[10] Qian Wenjian, Shang Yuequan, Du Lili, Zhu Senjun. Influences of Inflatable Location and Pressure on Draining of Slopes [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 536-542.
[11] Peng Ling, Xu Suning, Peng Junhuan. Regional Landslide Risk Assessment Using Multi-Source Remote Sensing Data [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 175-186.
[12] Wang Meng, Jiang Yuanjun, Huang Dong, Li Qianqian. Hazard Assessment on Rainfall-Triggered Landslide and Debris Flow in the Seismic Disturbance Area at Watershed Level [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1781-1788.
[13] Guo Xiaohua, Lu Yudong, Li Xiaolin, Sun Zheng, Li Chongyang, Zhang Rong. Event of Block up of Upper Yellow River by Dehenglong-Suozi Landslides [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1789-1797.
[14] Jiang Xiuzi, Wen Baoping, Jiang Shu, Feng Chuanhuang, Zhao Cheng, Li Ruidong. Main Factors Analysis for Controlling Kinematic Behavior of Suoertou Landslide [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1798-1807.
[15] Qiu Dandan, Niu Ruiqing, ZhaoYannan, Wu Xueling. Risk Zoning of Earthquake-Induced Landslides Based on Slope Units: A Case Study on Lushan Earthquake [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1470-1478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!