Journal of Jilin University(Earth Science Edition)

Previous Articles     Next Articles

Experimental Study on the Clastic Deposition Forming Debris Flow

Qi Xing, Yu Bin, Zhu Yuan   

  1. State Key Laboratory of Geo-Hazards Prevention and Geo-Environment Protection, Chengdu University of Technology, Chengdu610059,China
  • Received:2014-04-26 Online:2014-11-26 Published:2014-11-26

Abstract:

Earthquake or strong rainfall can induce landslides. The landslide collapses to form clastic flow accumulation in the channels, forms debris flow under the action of the later rainfall. This is a type of debris flow which is called the landslide clastic accumulation of debris flow. The authors analyse characteristic parameters of the influence on starting of clastic accumulation of debris flow, research the information process of the landslide clastic accumulation of debris flow on the basis of experiments, and then analyse the influence of clastic accumulation surface slope, soil clay content, median grain size and non-uniformity coefficient on the formation of debris flow. The results show that the surface slope of clastic deposition have no significant effect on forming debris flow with discharge per unit width. The clay content are only affect clastic erosion at not more than 5%. It has no significant effect on digging up discharge per unit width. The main influence factors of required discharge per unit width are median diameter and non-uniformity coefficient width are increased with the increase of median diameter and non-uniformity coefficient. By fitting the experimental data, the formula of unit width discharge is obtained, which reflects the influence of median particle size and non-uniformity coefficient. For the formula only two main factors are considered width influence the formation of debris flow (d50 and Cu). Therefore, the calculation results is smaller than hydrological calculation, but the overall trend is consistent. The formula can be applied in predicting this kind of debris flow after modificatin.

Key words: clastic deposition, debris-flow, grading, initiation flow, landslide

CLC Number: 

  • P642
[1] Zhao Jintong, Niu Ruiqing, Yao Qi, Wu Xueling. Landslide Susceptibility Assessment Aided by SAR Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1182-1191.
[2] Tan Fulin, Hu Xinli, Zhang Yuming, He Chuncan, Zhang Han. Calculation Method of Landslide Thrust Considering Progressive Failure Process [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 193-202.
[3] Fu Jiankang, Luo Gang, Hu Xiewen. Physical Model Experiment on Overtopping Overflow Failure of Landslide Dam [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 203-212.
[4] Li Peng, Su Shengrui, Ma Chi, Huang Huang, Xu Jiwei. Formation Mechanism of Landslides with Accumulation Layer-Bedrock Contact Surface:Taking Zushimiao Landslide as an Example [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1471-1479.
[5] Wang Kongwei, Chang Delong, Li Chunbo, Hu Anlong, Wei Dong. Discourse About Landslide Groups:Take Three Gorges Reservoir Region as an Example [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1491-1501.
[6] Qin Shengwu, Ma Zhongjun, Liu Xu, Li Guangjie, Peng Shuaiying, Chen Junjun, Zhai Jianjian. Hazard Assessment of Collapse and Landslide Induced by Tianchi Volcano in Changbai Mountain Area Based on Simplified Newmark Displacement Model [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 826-838.
[7] Xu Zemin, Mei Xuefeng, Wang Lirong, Zhang Youwei, Zeng Qiang, Guo Lili. Precipitation Temporal and Variability of Landslide Early Warning Research: A Case Study on Touzhai Gully in Yunnan Province [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 154-162.
[8] An Yuke, Wu Weijiang, Zhang Wen, Yao Qingqing, Song Jian, Zhang Honghong. Crack Control Design Method of Anti-Slide Pile and Engineering Application [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 171-178.
[9] Chen Jianping, Li Huizhong. Genetic Mechanism and Disasters Features of Complicated Structural Rock Mass Along the Rapidly Uplift Section at the Upstream of Jinsha River [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1153-1167.
[10] Wang Changming, Tian Shuwen, Wang Yihong, Ruan Yunkai, Ding Guiling. Risk Assessment of Debris Flow: A Method of SVM Based on FCM [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(4): 1168-1175.
[11] Qian Wenjian, Shang Yuequan, Du Lili, Zhu Senjun. Influences of Inflatable Location and Pressure on Draining of Slopes [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 536-542.
[12] Peng Ling, Xu Suning, Peng Junhuan. Regional Landslide Risk Assessment Using Multi-Source Remote Sensing Data [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 175-186.
[13] Wang Meng, Jiang Yuanjun, Huang Dong, Li Qianqian. Hazard Assessment on Rainfall-Triggered Landslide and Debris Flow in the Seismic Disturbance Area at Watershed Level [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1781-1788.
[14] Guo Xiaohua, Lu Yudong, Li Xiaolin, Sun Zheng, Li Chongyang, Zhang Rong. Event of Block up of Upper Yellow River by Dehenglong-Suozi Landslides [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1789-1797.
[15] Jiang Xiuzi, Wen Baoping, Jiang Shu, Feng Chuanhuang, Zhao Cheng, Li Ruidong. Main Factors Analysis for Controlling Kinematic Behavior of Suoertou Landslide [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(6): 1798-1807.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!