Journal of Jilin University(Earth Science Edition) ›› 2017, Vol. 47 ›› Issue (5): 1458-1470.doi: 10.13278/j.cnki.jjuese.201705110

Previous Articles     Next Articles

Carbonate Geochemical Record of Sea-Level Change of Lunshan Formation in Lower Ordovician in Jurong Area

Xu Zhongjie1, Lan Yizhi1, Cheng Rihui1, Li Shuanglin2   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Open Laboratory of Marine Deposition, Qingdao Institute of Marine Geology, Qingdao 266071, Shandong, China
  • Received:2016-12-13 Online:2017-09-26 Published:2017-09-26
  • Supported by:
    Supported by China Geological Survey Project(GZH200800503-WX02),National Natural Science Foundation of China for Youth Science(41402087)and China Postdoctoral Science Foundation(2013M530976)

Abstract: The Lower Ordovician carbonate sedimentation of Lunshan Formation in Jurong area is composed of an open platform and a deep-water shelf. The sequences 1 and 2, two transgression processes, are both composed of the low stand system and the transgressive system tracts. The relative sea-level lifting curves of Lushan Formation can be drawn based on the paleo-salinity and paleo-bathymetric curves reflected by the values of δ13C, Sr/Ba, 1 000Sr/Ca and V/Ni, combined with the sedimentary environment change and system tract features. The Level I sea-level relative lifting curve reflects that Lunshan Formation underwent a transgression. The Level Ⅱ sea-level curve shows that the sea-level fluctuated frequently. A fluctuation included two sea-level relative rises and one fall. The composition of oxygen and carbon isotope in Lunshan Formation was less affected by the late diagenesis, and it retained basically the original marine isotope composition. The δ13C value falls between -0.8‰ and 2.3‰, and the mean is 0.45‰. The δ18O value falls between -14.4‰ and -9.3‰ and the mean is -10.2‰, mainly in the range of -10.0‰——9.0‰. The Z values calculated from δ13C and δ18O are all greater than 120, which reflects that the carbonate in Lunshan Formation formed in a marine environment.

Key words: Jurong, Lower Ordovician, Lunshan Formation, element geochemistry, oxygen and carbon isotope, sea-level change

CLC Number: 

  • P588.245
[1] 佘晓宇, 徐宏节, 何治亮. 江苏下扬子区中、古生界构造特征及其演化[J]. 石油与天然气地质, 2004, 25(2):226-236. She Xiaoyu, Xu Hongjie, He Zhiliang. Tectonic Characteristics and Evolution of Mesozoic and Paleozoic in Lower Yangtze Region, Jiangsu[J].Oil Gas Geology, 2004, 25(2):226-236.
[2] 陈安定. 苏北南部、句容地区中、古生界构造特征[J]. 小型油气藏, 2006(1):1-11. Chen Anding. Structural Feature of Mesozoic,Paleozoic in Jurong Area,South Subei[J]. Small Hydro Carbon Reservoirs, 2006(1):1-11.
[3] 郭念发. 下扬子盆地与区域地质构造演化特征及油气成藏分析[J]. 浙江地质, 1996, 12(2):19-26. Guo Nianfa. Evolutionary Gound of Basin and Regional Structure in Lower Yangtze Area[J]. Geology of Zhejiang, 1996, 12(2):19-26.
[4] 邹西平. 江苏句容仑山附近奥陶纪鹦鹉螺[J]. 古生物学报, 1988, 27(3):309-333. Zou Xiping. Ordovician Nautiloid Fauna from Lunshan,Jurong,Jiangsu[J]. Acta Palaeontologica Sinica, 1988, 27(3):309-333.
[5] 王玉净, 张元动. 江苏仑山地区上奥陶统五峰组放射虫动物群及其地质意义[J]. 微体古生物学报, 2011, 28(3):251-260. Wang Yujing, Zhang Yuandong. Radiolarian Fauna of the Wufeng Formation (Upper Ordovician) in Lunshan Area, Jiangsu and Its Geological Significance[J]. Acta Micropalaeontologica Sinica, 2011, 28(3):251-260.
[6] 何宏, 彭苏萍, 邵龙义. 巴楚寒武-奥陶系碳酸盐岩微量元素及沉积环境[J]. 新疆石油地质, 2004, 25(6):631-633. He Hong, Peng Suping, Shao Longyi. Trace Elements and Sedimentary Settings of Cambrian-Ordovician Carbonates in Bachu Area, Tarim Basin[J]. Xinjiang Petitoleum Geology, 2004, 25(6):631-633.
[7] 倪善芹, 侯泉林, 琚宜文, 等. 北京下古生界碳酸盐岩地层中微量元素迁移富集规律[J]. 中国科学:D辑:地球科学, 2009, 39(4):488-496. Ni Shanqin, Hou Quanlin, Ju Yiwen, et al. Regularity of Migration and Enrichment of Trance Elements in Carbonate Rock Strata in Lower Paleozoic in Beijing[J]. Science China:Series D:Earth Science, 2009, 39(4):488-496.
[8] 高长林, 叶德燎, 方成名. 下扬子早古生代碳酸盐岩的稀土元素特征及其意义[J]. 油气藏评价与开发, 2011, 1(1/2):1-6. Gao Changlin, Ye Deliao, Fang Chengming. Characteristics and Significance of Carbonate Rocks REE During Early Palaeozoic in Lower Yangtze Region[J]. Reservoir Evaluation and Development, 2011, 1(1/2):1-6.
[9] 邵龙义, 张鹏飞. 桂中合山组碳酸盐岩的氧、碳稳定同位素组成及古盐度和古温度[J]. 中国煤田地质, 1991, 3(1):21-26. Shao Longyi, Zhang Pengfei. Oxygen and Carbon Stable Isotope Composition of Carbonate Rocks, Paleosalinity and Paleotemperature in Heshan Formation in Middle-Guangxi[J]. Coal Geology of China, 1991, 3(1):21-26.
[10] 王大锐, 冯晓杰. 渤海湾地区下古生界碳、氧同位素地球化学研究[J]. 地质学报, 2002, 76(3):400-408. Wang Darui, Feng Xiaojie. Research on Carbon and Oxygen Geochemistry of Lower Paleozoic in North China[J]. Acta Geologica Sinica, 2002, 76(3):400-408.
[11] 江茂生, 朱井泉, 陈代钊, 等. 塔里木盆地奥陶纪碳酸盐岩碳、锶同位素特征及其对海平面变化的响应[J]. 中国科学:D辑:地球科学, 2002, 3(1):36-42. Jiang Maosheng, Zhu Jingquan, Chen Daizhao, et al. Carbon and Strontium Isotope Characteristics and Response of Sea-Level Change in Ordovician in Tarim Basin[J]. Science China:Series D:Earth Science, 2002, 3(1):36-42.
[12] Korte C, Kozur H W, Veizer J. δ13C and δ18O Values of Triassic Brachiopods and Carbonate Rocks as Proxies for Coeval Seawater and Palaeotem-perature[J]. Palaeogeography, Palaeoclimat, Palaeoecology, 2005, 226(3/4):287-306.
[13] Pufahl P K, James N P, Kyser T K, et al. Bra-chiopods in Epeiric Seas as Monitors of Secular Changes in Ocean Chemistry:Amiocene Example from the Murray Basin,South Australia[J]. Journal of Sedimentary Research, 2006, 76(6):926-941.
[14] Payne J L, Kump L R. Evidence for Recurrent Early Triassic Massive Volcanism from Quantitative Interpretation of Carbon Isotope Fluctuations[J]. Earth and Planetary Science Letters, 2007, 256(1/2):264-277.
[15] 高福红, 张永胜, 蒲秀刚, 等.白云岩化作用类型及机理:以歧口凹陷古近系沙河街组一段为例[J]. 吉林大学学报(地球科学版), 2017, 47(2):355-396. Gao Fuhong, Zhang Yongsheng, Pu Xiugang, et al. Type of Dolomization and Formation Mechanism:A Case Study of Palaeogene Es1 in Qikou Sag[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2):355-396.
[16] 李任伟, 陈锦石, 张淑坤. 中元古代雾迷山组碳酸盐岩碳和氧同位素组成及海平面变化[J]. 科学通报, 1999, 44(16):1697-1702. Li Renwei, Chen Jinshi, Zhang Shukun. Carbon and Oxygen Isotope Composition of Carbonate and Sea-Level Change in Wumishan Formation in Mesoproterozoic[J]. Chinese Science Bulletin, 1999, 44(16):1697-1702.
[17] 彭苏萍, 何宏, 邵龙义, 等. 塔里木盆地C-O碳酸盐岩碳同位素组成特征[J]. 中国矿业大学学报, 2002, 31(4):353-357. Peng Suping, He Hong, Shao Longyi, et al. Carbon Isotopic Compositions of the Cambrian-Ordovician Carbonates in Tarim Basin[J]. Journal of China University of Mining &Technology, 2002, 31(4):353-357.
[18] 罗顺社, 汪凯明. 河北宽城地区中元古代高于庄组碳酸盐岩碳氧同位素特征[J]. 地质学报, 2010, 84(4):492-499. Luo Shunshe, Wang Kaiming. Carbon and Oxygen Isotope Composition of Carbonatic Rock from the Mesoproterozoic Gaoyuzhuang Formation in the Kuancheng Area,Hebei Province[J]. Acta Geologica Sinica, 2010, 84(4):492-499.
[19] 牛君, 黄文辉, 丁文龙, 等. 麦盖提斜坡奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(1):61-73. Niu Jun, Huang Wenhui, Ding Wenlong, et al.Carbon and Oxygen Isotope Characteristics and Its Significance of Ordovician Carbonates in Yubei Area of Maigaiti Slope[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1):61-73.
[20] Veizer J. Trace Elements and Isotopes in Sedimentary Carbonates[J]. Reviews in Mineralogy & Geochemistry, 1983, 11(1):265-299.
[21] Marshall J D. Climatic and Oceanographic Isotopic Signals from the Carbonate Rock Record and Their Preservation[J]. Geological Magazine, 1992, 129:143-160.
[22] 许中杰, 程日辉, 王嘹亮, 等. 广东东莞地区中侏罗统塘厦组凝灰质沉积物的元素地球化学特征及构造背景[J]. 岩石学报, 2010, 26(1):352-360. Xu Zhongjie, Cheng Rihui,Wang Liaoliang,et al. Elemental Geochemical Characteristics of Tuffaceous Sediments and Tectonic Setting of Tangxia Formation of Middle Jurassic in Dongguan, Guangdong Province[J]. Acta Petrologica Sinica, 2010, 26(1):352-360.
[23] 陈强, 张慧元, 李文厚, 等. 鄂尔多斯奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 古地理学报, 2012, 14(1):117-124. Chen Qiang, Zhang Huiyuan, Li Wenhou, et al. Characteristics of Carbon and Oxygen Isotopes of the Ordovician Carbonate Rocks in Ordos and Their Implication[J]. Journal of Palaeogeography, 2012, 14(1):117-124.
[24] 旷红伟, 刘燕学, 孟祥化, 等. 吉辽地区震旦系碳酸盐岩地球化学特征及其环境意义[J]. 天然气地球科学, 2005, 16(1):54-58. Kuang Hongwei, Liu Yanxue, Meng Xianghua. The Geochemical Features and Its Environmental Significance of the Sinian Carbonates in the Jilin-Liaoning Area[J]. Natural Gas Geoscience, 2005, 16(1):54-58.
[25] 韩永林, 王海红, 陈志华, 等. 耿湾-史家湾地区长6段微量元素地球化学特征及古盐度分析[J]. 岩性油气藏, 2007, 19(4):16-20. Han Yonglin, Wang Haihong, Chen Zhihua, et al. Paleosalinity Analysis and Trace Element Geochemistry of Chang 6 Member in Gengwan-Shijiawan Area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4):16-20.
[26] Veizer J, Demovic R. Strontium as a Tool for Facies Analysis[J]. Journal of Sedimentary Petrology, 1974, 44(1):93-115.
[27] 胡明毅. 塔北柯坪奥陶系碳酸盐岩地球化学特征及环境意义[J]. 石油与天然气地质, 1994, 15(2):158-163. Hu Mingyi. Geochemical Characters and Ewironmental Significance of Ordovician Carbonate Rocks in Keping Area, Tarim Basin[J].Oil & Gas Geology, 1994, 15(2):158-163.
[28] 邵龙义. 湘中早石炭世沉积学和层序地层学[M]. 北京:中国矿业大学出版社, 1997. Shao Longyi. Sedimentology and Sequence Stratigraphy in Early Carboniferous in Middle Hunan[M]. Beijing:China Mining University Press, 1997.
[29] 李祥辉, 张洁. 海平面及海平面变化综述[J]. 岩相古地理, 1999, 19(4):61-72. Li Xianghui, Zhang Jie. Review of Sea-Level and Sea Level Change[J]. Sedimentary Facies and Palaeogeography, 1999, 19(4):61-72.
[30] 汪凯明, 罗顺社. 海相碳酸盐岩锶同位素及微量元素特征与海平面变化[J]. 海洋地质与第四纪地质, 2009, 29(6):51-58. Wang Kaiming, Luo Shunshe. Strontium Isotope and Trace Element Characteristics of Marine Carbonate and Sea Level Fluctuation[J]. Marine Geology & Quaternary Geology, 2009, 29(6):51-58.
[31] Deny L A, Brasier M D, Corfield R M, et al. Sr and C Isotopes in Lower Cambrian Carbonates from the Siberian Craton:A Paleoenvironmental Record During the Cambrian Explosion[J]. Earth and Planetary Science Letters, 1994, 128(3/4):671-681.
[32] Kaufman A J, Knoll A H. Neoproterozoic Variations in the C-Isotopic Composition of Seawater:Stratigraphic and Biogeochemical Implications[J]. Precambrian Research, 1995, 73(1/2/3/4):27-49.
[33] 王大锐, 白志强. 广西中-上泥盆统界线附近的化学地层学特征[J]. 地层学杂志, 2002, 26(1):50-54. Wang Darui, Bai Zhiqiang. Chemostratigraphic Characters of the Middle-Upper Devonian Boundary in Guangxi, South China[J]. Journal of Stratigraphy, 2002, 26(1):50-54.
[34] 黄思静, 李小宁, 武文慧,等. 显生宙海相碳酸盐高δ13C 时期的古海洋学[J]. 地球科学进展, 2015,30(11):1185-1197. Huang Sijing, Li Xiaoning,Wu Wenhui et al. The Paleoceanography During the Time with High δ13C of Phanerozoic Marinecarbonates[J]. Advances in Earth Science,2015, 30(11):1185-1197.
[35] 邵龙义, Jones T P. 桂中晚二叠世碳酸盐岩碳同位素的地层学意义[J]. 沉积学报, 1999,17(1):84-88. Shao Longyi, Jones T P. Carbon Isotopes and the Stratigraphical Implication of the Late Permian Carbonates in Central Guangxi[J]. Acta Sedimentologica Sinica, 1999,17(1):84-88.
[36] 田景春, 曾允孚. 贵州二叠纪海相碳酸盐岩碳、氧同位素地球化学演化规律[J]. 成都理工学院学报, 1995, 22(1):78-82. Tian Jingchun, Zeng Yunfu. The Evolution Pattern of the Carbon and Oxygen Isotopes in the Permian Marine Carbonate Rocks from Guizhou[J]. Journal of Chengdu Institute of Technology, 1995, 22(1):78-82.
[37] 沈渭洲, 方一亭, 倪琦生, 等. 中国东部寒武系与奥陶系界线地层的碳氧同位素研究[J]. 沉积学报, 1997, 15(4):38-42. Shen Weizhou, Fang Yiting, Ni Qisheng, et al. Carbon and Oxygen Isotopic Study Across the Cambrian-Ordovician Boundary Strata in East China[J]. Acta Sedimentol Sinica, 1997, 15(4):38-42.
[38] 李玉成. 华南晚二叠世碳酸盐岩碳同位素旋回对海平面变化的响应[J]. 沉积学报, 1998, 3:52-57. Li Yucheng. The Carbon Isotope Cyclostratigraphic Responses to Sea Level Change in Upper Permian Limestones from South China[J]. Acta Sedimentologca Sinica, 1998, 3:52-57.
[39] 黄思静. 上扬子地台区晚古生代海相碳酸盐岩的碳、锯同位素研究[J]. 地质学报, 1997,71(1):45-53. Haung Sijing, A Study on Carbon and Strontium Isotopes of Late Paleozoic Carbonate Rocks in the Upper Yangtze Platform[J]. Acta Geologica Sinica, 1997,71(1):45-53.
[40] Baud A, Magaritz M, Holser W T. Permian-Triassic of the Tethys:Carbon Isotope Studies[J]. Geologische Rundschau,1989, 78:649-677.
[41] Keith M H, Weber J N. Isotopic Composition and Environmental Classification of Selected Limestones and Fossils[J]. Geochimica Cosmochimica Acta, 1964, 28:1787-1816.
[1] Xu Zhongjie, Cheng Rihui, Wang Liaoliang, Zhang Li. Mineral and Elemental Geochemistry Records of the Paleoclimate and the Tectonic Background in Late Triassic Xiaoshui Formation-Early Jurassic Jinji Formation in East Guangdong [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 712-723.
[2] SHAO Ji-an, ZHANG Lv-qiao, Mu Bao-lei. Distribution of Uranium and Molybdenum Deposits and Their Relations with Medium Massifs in Central Asian Orogenic Zone [J]. J4, 2011, 41(6): 1667-1675.
[3] XU Zhong-jie, CHENG Ri-hui, WANG Liao-liang, ZHANG Li, LI Fei. Relative Change of Sea-Level and Element Geochemistry Evidence of Tectonic Setting During Early or Middle Jurassic in Qiaoyuan Formation of Huilai Area in Guangdong Province [J]. J4, 2011, 41(4): 966-975.
[4] CHEN Xing-shi, ZHANG Peng, SUN Jing-gui, TANG Chen, CUI Pei-long, LI Yi-xin. Element Geochemistry and Genesis of Early Paleozoic Granite in Yingchengzi Gold-Field, Eastern Zhangguangcai Mountain and Its Tectonic Significance [J]. J4, 2011, 41(2): 440-447.
[5] KONG Qiang-ying, CHENG Ri-hui. Sedimentary Characteristics of Cambrian-Lower Ordovician Sequence in Peacock River Area in Tarim Basin, Xinjiang, NW China [J]. J4, 2010, 40(3): 527-534.
[6] CHU Feng-you, HU Da-qian, YAO Jie. Mineral Composition and Element Geochemistry of Co-Rich Nodule from YJB Sea Mount in Central Pacific Ocean [J]. J4, 2007, 37(1): 8-0014.
[7] CHEN Jun-qiang,SUN Jing-gui, PIAO Shou-cheng,ZHAO Jun-kang, ZHAI Yu-feng. Genesis and Significance of Dark Dikes in the Jinchanggouliang Mine Area, Inner Mongolia:Evidences from Geochemistry of the Major and Trace Elements [J]. J4, 2005, 35(06): 707-0713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!