Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (1): 252-260.doi: 10.13278/j.cnki.jjuese.20170048

Previous Articles     Next Articles

Multigrid Quasi-Linear Approximation for Three-Dimensional Airborne EM Forward Modeling

Yin Changchun, Lu Yongchao, Liu Yunhe, Zhang Bo, Qi Yanfu, Cai Jing   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-02-22 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41530320,41274121,41404093) and National Key Research and Development Program of China (2016YFC0303100, 2017YFC0601903)

Abstract: In an integral equation (IE) method, the storage of Green's coefficient matrix and solution of linear equation system are always challenging for its development and application. Quasi-linear (QL) approximation method assumes that a linear relationship exists between the background and abnormal field. It can deal with nonlinear problems effectively. For a multiple-transmitter airborne EM (AEM) problem, however, the calculation is substantially slowed down. In this paper we present an algorithm based on quasi-linear approximation (MGQL) of multiple grids, through utilizing the Toeplitz property of the coefficient matrix to store it and the fast fourier transform to achieve the matrix-vector multiplication so as to reduce the computational complexity. This method combines the advantages of IE and QL, and can be a fast and accurate tool for a numerical modeling for the multiple-transmitter airborne EM. Numerical experiments show that the MGQL method is efficient for AEM modeling. The memory and time requirement for MGQL method is much less than that of the existing IE methods. Especially for large grids, the computation of this method can be accelerated by over 10 times than before. It is expected that its extraordinary computational efficiency will fundamentally improve 3D AEM inversions.

Key words: multigrid quasi-linear (MGQL) approximation, airborne electromagnetic method, three-dimensional modeling, integral equation (IE)

CLC Number: 

  • P631.3
[1] 殷长春,张博,刘云鹤,等.航空电磁勘查技术发展现状及展望[J].地球物理学报,2015,58(8): 2637-2653. Yin Changchun,Zhang Bo,Liu Yunhe,et al. Review on Airborne EM Technology and Developments[J]. Chinese Journal Geophysics,2015,58(8): 2637-2653.
[2] Habashy T M,Groom R W,Spies B R. Beyond the Born and Rytov Approximations: A Nonlinear Approach to Electromagnetic Scattering[J]. J Geophys Res,1993,98(B2): 1759-1775.
[3] Zhdanov M S,Fang S. Quasi-Linear Approximation in 3-D Electromagnetic Modeling[J]. Geophysics,1996,61(3): 646-665.
[4] Zhdanov M S,Fang S. Quasi-Linear Series in Three-Dimensional Electromagnetic Modeling[J]. Radio Science,1997,32(6): 2167-2188.
[5] Zhdanov M S,Dmitriev V I,Fang S,et al. Quasi-Analytical Approximations and Series in 3D Electromagnetic Modeling[J]. Geophysics,2000,65(6): 1746-1757.
[6] Zhdanov M S,Tartaras E. Three-Dimensional Inver-sion of Multitransmitter Electromagnetic Data Based on the Localized Quasi-Linear Approximation[J]. Geophys J Int,2002,148(3): 506-519.
[7] 刘永亮,李桐林,胡英才,等. 快速拟线性近似方法及三维频谱激电反演研究[J]. 地球物理学报,2015,58(12): 4709-4717. Liu Yongliang,Li Tonglin,Hu Yingcai,et al. Fast Quasi-Linear Approximation and the Three-Dimensional Spectrum of Induced Polarization Inversion Study[J]. Chinese Journal Geophysics,2015,58(12): 4709-4717.
[8] Ueda T,Zhdanov M S. Fast Numerical Modeling of Multitransmitter Electromagnetic Data Using Multigrid Quasi-Linear Approximation[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(6): 1428-1434.
[9] 周后型.大型电磁问题快速算法的研究[D].南京:东南大学,2002. Zhou Houxing. Inverstigations on Fast Algorithms for Electrically Large Eletromagnetic Problems[D]. Nanjing: Southeast University, 2002.
[10] Zhang Z Q,Liu Q H. Three-Dimensional Weak-Form Conjugate- and Biconjugate-Gradient FFT Methods for Volume Integral Equations[J]. Microwave and Optical Technology Letters,2001,29(5): 350-356.
[11] Hohmann G W. Three-Dimesional Induced Polariza-tion and Electromagnetic Modeling[J]. Geophysics,1975,40(2): 309-324.
[12] Wannamaker P E,Hohmann G W,Sanfilipo W A. Electromagnetic Modeling of Three-Dimensional Using Integral Equations[J]. Geophysics,1984,49(1): 60-74.
[13] Born M. Optic[M]. New York: Springer,1933.
[14] Zhdanov M S,Lee S K,Yoshioka K. Integral Equation Method for 3D Modeling of Electromagnetic Fields in Complex Structures with Inhomogeneous Background Conductivity[J]. Geophysics,2006,71(6): G333-G345.
[15] Gao G Z,Torres-Verdin C,Fang S. Fast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations Using a Novel Approximation Technique[J]. Petrophysics,2004,45(4): 335-349.
[16] 张金会,孙建国. 三维直流电场积分方程中奇异性的近似处理[J]. 吉林大学学报(地球科学版),2009,39(5): 923-928. Zhang Jinhui,Sun Jianguo. Treatment of Singularity in Integration Equations for 3D DC Electrical Field[J]. Journal of Jilin University (Earth Science Edition),2009,39(5): 923-928.
[17] Xiong Z. Electromagnetic Fields of Electric Dipoles Embedded in a Stratified Anisotropic Earth[J]. Geophysics,1989,54(12): 1643-1646.
[18] Xiong Z. Electromagnetic Modeling of 3-D Structures by the Method of System Iteration Using Integral Equations[J]. Geophysics,1992,57(12): 1556-1561.
[19] 张辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. 吉林大学学报(地球科学版),2006,36(2): 284-288. Zhang Hui,Li Tonglin,Dong Ruixia. 3D Electromagnetic Inversion by Volume Integral Equation Method Based on Current Dipole Source[J]. Journal of Jilin University (Earth Science Edition),2006,36(2): 284-288.
[20] Newman G A,Alumbaugh D L. Frequency-Domain Modeling of Airborne Electromagnetic Responses Using Staggered Finite Differences[J]. Geophysical Prospecting,1995,43: 1021-1042.
[21] 黄威,殷长春,贲放,等. 频率域航空电磁三维矢量有限元正演模拟[J]. 地球科学,2016,41(2): 331-342. Huang Wei,Yin Changchun,Ben Fang,et al. 3D Forward Modeling for Frequency AEM by Vector Finite Element[J]. Earth Science,2016,41(2): 331-342.
[22] 张博,殷长春,刘云鹤,等. 起伏地表频率域/时域航空电磁系统三维正演模拟研究[J]. 地球物理学报,2016,59(4): 1506-1520. Zhang Bo,Yin Changchun,Liu Yunhe,et al. 3D Modeling on Topographic Effect for Frequency-/Time-Domain Airborne EM Systems[J].Chinese Journal Geophysics,2016,59(4): 1506-1520.
[23] 王德智.基于积分方程技术的三维电磁法正演模拟研究[D].长春:吉林大学,2015. Wang Dezhi. Three-Dimensional EM Forward Modeling Based on Integral Equation Method[D]. Changchun: Jilin University,2015.
[24] Chew W C,Tong M S,Hu B. Integral Equation Me-thods for Electromagnetic and Elastic Waves[M]. San Rafeal: Morgan & Claypool Publishers,2009.
[1] Wang Weiping, Zeng Zhaofa, Li Jing, Wu Chengping. Topographic Effects and Correction for Frequency Airborne Electromagnetic Method [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3): 941-951.
[2] LU Xing-chang,ZHANG Yan-hong. Spatial Object Modeling Based on 3D Laser Scanning Data [J]. J4, 2008, 38(1): 167-0171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!