Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (2): 433-444.doi: 10.13278/j.cnki.jjuese.20170243

Previous Articles     Next Articles

3D Vector Finite-Element Airborne Electromagnetic Modelling in an Arbitrary Anisotropic Medium

Zeng Zhaofa1,2, Huo Zhijun1,2, Li Wenben3, Li Jing1,2, Zhao Xueyu1,2, He Rongqin1,2   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Key Laboratory of Applied Geophysics, Ministry of Land and Resources of PRC, Changchun 130026, China;
    3. College of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China
  • Received:2017-09-07 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by Sub Project of National Key Projects (2016YFC060110402),National Natural Science Foundation of China (41504083) and China Postdoctoral Science Foundation Project (2015M571366)

Abstract: In the application of airborne electromagnetic detecting method, underground detection environment is complex, and the physical parameters of underground media are anisotropic. If we use the conventional model of isotropic medium, serious deviations will occur during the data interpretation. This paper presents three-dimensional frequency-domain airborne electromagnetic modeling in an arbitrary anisotropic medium based on the vector finite element method. By decomposing the total field into primary and secondary fields, the uniform space of the air medium is subjected to the analytic calculation of the primary field, and the vector finite element method is used to solve the double-rotation equation of the secondary electric field. The parallel solution of the large-scale sparse matrix is calculated by using the shared-memory direct solver PARDISO, so that the 3D model calculation is greatly speeded up. Then the 3D anisotropic media simulations of four typical target-models are carried out, including isotropic rock-anisotropic target (rotate around the z axis) model,isotropic rock-anisotropic target (rotate around x axis) model, isotropic rock-anisotropic target (rotate around z axis) model, and anisotropic rock-anisotropic target rotate (around x axis) model. The change characteristics of the real and imaginary components of the magnetic field under different rotating angles in different models are analyzed and compared, and the influence law and identification method of the anisotropic parameters in airborne electromagnetic response are summarized. The research can provide a reference for the accurate interpretation and inversion of the airborne electromagnetic data.

Key words: frequency-domain airborne EM, vector finite element method, arbitrarily anisotropic medium

CLC Number: 

  • P631.1
[1] 雷栋,胡祥云,张素芳. 航空电磁法的发展现状[J]. 地质找矿论丛,2006,21(1):40-44,53. Lei Dong, Hu Xiangyun, Zhang Sufang. Development of Airborne Electromagnetic Method[J].Contributions to Geology and Mineral Resources Research, 2006, 21(1):40-44,53.
[2] 王卫平. 频率域航空电磁法发展研究现状与应用研究[C]//中国地球物理学会.中国地球物理学会第二十七届年会论文集.北京:中国地球物理学会,2011:2. Wang Weiping. Application and Prospect of the Research About Frequeney Domain Airborne Electromagneite Method[C]//Chinese Geophysical Society. Proceedings of the Twenty-Seventh Annual Meeting of China Geophysical Society. Beijing:China Geophysical Society, 2011:2.
[3] Newman G A, Alumbaugh D L.Frequency Domain Modeling of Airborne Electromagnetic Responses Using Staggered Finite Differences[J]. Geophysical Prospecting, 1995, 43:1021-1042.
[4] 朱凯光,林君,刘长胜,等. 频率域航空电磁法一维正演与探测深度[J]. 地球物理学进展,2008,23(6):1943-1946. Zhu Kaiguang, Lin Jun, Liu Changsheng, et al. One-dimensional Forwand and Prospecting Depth for Airborne Frequency Domain Electromagnetic Method[J]. Progress in Geophysics, 2008, 23(6):1943-1946.
[5] 高亮,胡祥云,王卫平,等. 磁性条件下频率域航空电磁法正演研究[J]. 工程地球物理学报,2009,6(4):399-403. Gao Liang, Hu Xiangyun, Wang Weiping, et al. A Study of Frequency Airborne Electromagnetic Forward Under Magnetic Condition[J]. Chinese Journal of Engineering Geophysics, 2009, 6(4):399-403.
[6] 李小康. 基于MPI的频率域航空电磁法有限元二维正演并行计算研究[D]. 北京:中国地质大学,2011. Li Xiaokang. A MPI Based Parallel Calculation Investigation on Two Dimensional Finite Element Modelling of AEM[D]. Beijing:China University of Geosciences, 2011.
[7] 曲昕馨. 三维频率域航空电磁法的数值模拟及姿态影响和校正研究[D]. 长春:吉林大学,2014. Qu Xinxin. Numerical Simulation Attitude Effect and Correction of 3-D Frequency Domain Helicopterborne Electromagnetic Method[D]. Changchun:Jilin University, 2014.
[8] 王卫平,曾昭发,李静,等. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版),2015,45(3):941-951. Wang Weiping, Zeng Zhaofa, Li Jing, et al. Topographic Effects and Correction for Frequency Airborne Electromagnetic Method[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(3):941-951.
[9] 殷长春,张博,刘云鹤,等. 2.5维起伏地表条件下时间域航空电磁正演模拟[J]. 地球物理学报,2015,58(4):1411-1424. Yin Changchun, Zhang Bo, Liu Yunhe, et al. 2.5-D Forward Modeling of the Time-Domain Airborne EM Aystem in Areas with Topographic Relief[J]. Chinese Journal of Geophysics, 2015, 58(4):1411-1424.
[10] 黄威,殷长春,贲放,等. 频率域航空电磁三维矢量有限元正演模拟[J]. 地球科学,2016,41(2):331-342. Huang Wei, Yin Changchun, Ben Fang, et al. 3D Forward Modelling for Frequency AEM by Vector Finite-Element[J].Earth Science, 2016, 41(2):341-342.
[11] Li Wenben, Zeng Zhaofa, Li Jing,et al. 2.5D Fo-rward Modeling and In-Version of Frequency-Domain Airborne Electromagnetic Data[J]. Applied Geophysics, 2016, 13(1):37-47,218.
[12] Yin C, Weidelt P. Geoelectrical Fields in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 1999, 64(2):426-434.
[13] Yin C, Maurer, H.M. Electromagnetic Induction in a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 2001, 66(5):1405-1416.
[14] Avdeev D B, Kuvshinov A V, Pankratov O V, et al. Three-Dimensional Frequency-Domain Modeling of Airborne Electromagnetic Responses[J]. Exploration Geophysics, 1998, 29(2):111-119.
[15] Yin C, Fraser D C. The Effect of the Electrical Ani-sotropy on the Response of Helicopter-Borne Frequency-Domain Electromagnetic Systems[J]. Geophysical Prospecting, 2004, 52(5):399-416.
[16] Yin C, Hodges G. Simulated Annealing for Airborne EM Inversion[J]. Geophysics, 2007, 72(4):F189-F196.
[17] Liu Y, Yin C.3D Anisotropic Modeling for Airborne EM Systems Using Finite-Difference Method[J]. Journal of Applied Geophysics, 2014, 109:186-194.
[18] Yin C, Yan F, Liu Y. 3D Time-Domain Airborne EM Modeling for an Arbitrarily Anisotropic Earth[J]. Journal of Applied Geophysics, 2016, 131:163-178.
[19] Huang X, Yin C,Cao X Y, et al. 3D Anisotropic Modeling and Identification for Airborne EM Systems Based on the Spectral-Element Method[J]. Applied Geophysics, 2017, 14(3):419-430.
[20] Yin C. Geoelectrical Inversion for a One-Dimensional Anisotropic Model and Inherent Non-Uniqueness[J]. Geophys J Int, 2000, 140(1):11-23.
[21] Onsager L. Reciprocal Relations in Irreversible Pro-cesses[J]. Physical Review, 1931, 37(37):405-426.
[22] Mitsuhata Y. 2-D Electromagnetic Modeling by Finite Element Method with a DipoleSource and Top——Ography[J]. Geophysics, 2000, 65(2):465-475.
[23] 金建铭. 电磁场有限元方法[M]. 西安:西安电子科技大学出版社,1998. Jin Jianming. Electromagnetic Finite Element Method[M]. Xi'an:Xidian University Press, 1998.
[1] Yan Jiabin, Huang Xiangyu. Vector Finite Element Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1538-1549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!