Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (3): 719-735.doi: 10.13278/j.cnki.jjuese.20160352

Previous Articles     Next Articles

Occurrence Characteristics of HREE in Zoujiashan Uranium Deposit

Wang Yun1,2,3, Hu Baoqun2, Wang Qian2,4, Li Youguo1, Sun Zhanxue2, Guo Guolin2   

  1. 1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
    2. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang 330013, China;
    3. Jiangxi Institute of Coal Geology for Exploration Research, Nanchang 330001, China;
    4. Chifeng Institute of Geology and Mineral Exploration and Development of Inner Mongolia, Chifeng 024000, Inner Mongolia, China
  • Received:2017-10-25 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Nature Science Foundation of China(41472069) and Major Program for the Natural Science Foundation of Jiangxi Province(20152ACB20015)

Abstract: In a preliminary study, we found an amount of HREE in Zoujiashan uranium deposit as associated ores. To recycle these rare resources and explore their origin are very important. The basic work is to find out the characteristics of HREE associated in Zoujiashan uranium deposit. To do so, we used the electron probe micro-analyzer (EPMA) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to analyze their occurrence characteristics. The results show that the deposit contains mainly monazite, roentgenite, and xenotime. The LREE/HREE ratios of the monazite and roentgenite are high, a LREE enrichment type; While the LREE/HREE ratio of the xenotime is low, a HREE enrichment type. The minerals of uranium and thorium including pitchblende, brannerite, uranothorite, coffinite, thorite and zircon are of the type of HREE enrichment. Their total REE (∑REE+Y) is high with a range of (3 805.78-65 307.00)×10-6, their value of LREE/HREE is low with a range of 0.01-0.80, and the average is at 0.29. The other associated minerals,including apatite and potassium feldspar,are of the LREE enrichment type, while the fluorite is of the both types. Both LREE and HREE enrichment in the illite and pyrite are not significant. The HREE exists mainly in the form of isomorphism in the minerals of xenotime, uranium, and thorium, and a small amount of HREE is in the associated minerals.

Key words: HREE, uranium, occurrence characteristics, EPMA, LA-ICP-MS, Zoujiashan uranium deposit, Xiangshan orefield

CLC Number: 

  • P618.7
[1] 刘健,凌明星,李印,等.白云鄂博超大型REE-Nb-Fe矿床的稀土成矿模式综述[J].大地构造与成矿学, 2008, 33(2):270-282. Liu Jian, Ling Mingxing, Li Yin, et al. REE Ore-Forming Models of Giant Bayan Obo REE-Nb-Fe Ore Deposit:A Review[J]. Geotectonica et Metallogenia, 2008, 33(2):270-282.
[2] Roskill Information Services. Rare Earths, Market Outlook to 2020[R]. London:Roskill Information Services, 2015.
[3] 任向文, 石学法, 朱爱美, 等. 麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J]. 吉林大学学报(地球科学版), 2011, 41(3):707-714. Ren Xiangwen, Shi Xuefa, Zhu Aimei, et al. Existing Phase of Rare Earth Elements in Co-Rich Fe-Mn Crusts from Seamount MK of Magellan Seamount Cluster[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(3):707-714.
[4] Zhang K, Zhu X K, Yan B. A Refined Dissolution Method for Rare Earth Element Studies of Bulk Carbonate Rocks[J]. Chemical Geology, 2015, 412:82-91.
[5] Ogata T, Narita H, Tanaka M, et al. Selective Re-covery of Heavy Rare Earth Elements from Apatite with an Adsorbent Bearing Immobilized Tridentate Amido Ligands[J]. Separation and Purification Technology, 2016, 159(8):157-160.
[6] Andersen H T, Bryan R, Gray T, et al. Rare Earth Occurrences and Their Associations with Tonsteins, Diapirs, and Igneous Activity[R]. Pittsburgh:University of Pittsburgh, 2015.
[7] Denny F B, Guillemette R N, Lefticariu L. Rare Earth Mineral Concentrations in Ultramafic Alkaline Rocks and Fluorite Within the Illinois-Kentucky Fluorite District:Hicks Dome Cryptoexplosive Complex, Southeast Illinois and Northwest Kentucky (USA)[R]. Illinois:Illinois State Geological Survey, 2015.
[8] McLennan S M, Taylor S R. Rare Earth Element Mobility Associated with Uranium Mineralization[J]. Nature, 1979, 282:247-249.
[9] Cook N J, Ciobanu C L, O'Rielly D. Mineral Chemistry of Rare Earth Element(REE) Mineralization, Browns Ranges[J]. Western Australia, 2013, 172/173:192-193.
[10] Fayek M, Kyser T K. Char Acterisation of Multiple Fluid-Flow Events and Rare-Earth-Element Mobility Associated with Formation of Unconformity-Type Uranium Deposits in the Athabasca Basin, Saskatchewan[J]. Can Mineral, 1997, 35:627-658.
[11] Fryer M E, Taylor R P. Rare-Earth Element Dist-ributions in Uraninites:Implications for Ore Genesis[J]. Chem Geol, 1987, 63(1/2):101-108.
[12] 胡宝群, 邱林飞, 李满根, 等.江西相山铀矿田构造-岩浆演化及其成矿规律[J]. 地学前缘, 2015, 22(4):29-36. Hu Baoqun, Qiu Linfei, Li Mangen, et al. The Tectono-Magmatic Evolution and Metallogenic Regularity of Xiangshan Uranium Ore-Field in Jiangxi Province[J]. Earth Science Frontiers, 2015, 22(4):29-36.
[13] 王倩, 胡宝群, 邓声保, 等. 邹家山铀矿床矿石中的重稀土富集特征[J]. 东华理工大学学报(自然科学版), 2015, 38(3):240-248. Wang Qian, Hu Baoqun, Deng Shengbao, et al. Characteristics of Heavy REE Enrichment in Zoujiashan Uranium Ore-Deposit[J]. Journal of East China Institute of Technology (Natural Science), 2015, 38(3):240-248.
[14] 王莉, 胡宝群, 张卫民, 等. 邹家山铀矿床中伴生稀土元素的地球化学特征及酸浸实验研究[J]. 铀矿地质, 2014, 30(5):312-320. Wang Li, Hu Baoqun, Zhang Weimin,et al. Characteristics and Acid Leaching Experiment of Associated REE in Zoujiashan Uranium Deposit[J]. Uranium Geology, 2014, 30(5):312-320.
[15] 时国, 郭福生, 谢财富, 等. 赣中相山铀矿田基底变质岩原岩恢复及其形成环境[J]. 中国地质, 2015, 42(2):457-468. Shi Guo, Guo Fusheng, Xie Caifu,et al. Protoliths Reconstruction and Formation Conditions of Basement Metamorphic Rocks in the Xiangshan Uranium Orefield, Central Jiangxi[J]. Chinese Geology, 2015, 42(2):457-468.
[16] 窦小平. 相山火山盆地岩石稀土元素分布特征及其成因探讨[J]. 铀矿地质, 2005(6):338-344. Dou Xiaoping. REE Distribution Characteristics of Volcanic and Epimetamorphic Rocks in Xiangshan Volcanic Basin and Discussion on Their Genesis[J]. Uranium Geology, 2005(6):338-344.
[17] 饶泽煌. 江西相山铀矿田基性岩特征及意义研究[D]. 南昌:东华理工大学, 2012. Rao Zehuang. Mafic Geochemical Characteristics and Its Research Significance of Xiangshan Uranium Ore-Field, Jiangxi Province[D].Nanchang:East China University of Technology, 2012.
[18] 杨庆坤, 孟祥金, 郭福生, 等. 江西相山矿田脉石矿物微量元素特征及其地质意义[J]. 矿物岩石地球化学通报, 2014, 33(4):457-466. Yang Qingkun, Meng Xiangjin, Guo Fusheng, et al. Characteristics of Trace Elements in Gangue Minerals of the Xiangshan Uranium Polymetallic Deposit, Jiangxi, and Its Geological Significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(4):457-466.
[19] 胡宝群, 王倩, 邱林飞, 等. 相山矿田邹家山铀矿床碱交代矿化蚀变岩地球化学[J]. 大地构造与成矿学, 2016, 40(2):1-9. Hu Baoqun, Wang Qian, Qiu Linfei,et al.The Geochemistry of Alkali Metasomatic Alteration Rocks of Zoujiashan Uranium Ore-Deposit in Xiangshan Ore-Field[J]. Geotectonica et Metallogenia, 2016, 40(2):1-9.
[20] 孟艳宁. 相山矿田西部铀钍矿床的成矿机理研究[D]. 北京:核工业北京地质研究院, 2012. Meng Yanning. Study on the Metallogenic Mechanism of Uranium and Thorium Deposits in Western Xiangshan[D]. Beijing:Beijing Geological Research Institute of Nuclear Industry, 2012.
[21] 吴仁贵, 余达淦. 相山铀矿田611和6122矿床与34号矿床矿石建造特征对比[J]. 铀矿地质, 2000, 16(4):204-211. Wu Rengui,Yu Dagan. Comparison of Ore Formation Characteristics of Uranium Deposit NO.34 to Those of Uranium Deposits NO.611 and 6122[J]. Uranium Geology, 2000, 16(4):204-211.
[22] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying An Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
[23] Ali M A. Mineral Chemistry of Monazite-(Nd), Xenotime-(Y), Apatite, Florite and Zircon Hosting in Lamprophyre Dyke in Abu Rusheid Area, South Eastern Desert, Egypt[J]. Geologija, 2012, 55(1):93-106.
[24] Ondrejka M, Putiš M P, Uher I, et al. Fluid-Driven Destabilization of REE-Bearing Accessory Minerals in the Granitic Orthogneisses of North Veporic Basement (Western Carpathians, Slovakia)[J]. Mineralogy and Petrology, 2016, 110:561-580.
[25] 王鲜华, 潘兆橹. 牦牛坪稀土矿区氟碳铈矿与氟碳钙铈矿矿物学[J]. 河北地质学院学报, 1996, 19(3/4):307-313. Wang Xianhua, Pan Zhaolu. The Study on Mineralogy of Bastnaesite and Parisite in Maoniuping Ore Deposite[J]. Journal of Hebei Collegeof Geology, 1996, 19(3/4):307-313.
[26] Gysi A P, Williams-Jones A E. The Thermodynamic Properties of Bastnäsite-(Ce) and Parisite-(Ce)[J]. Chemical Geology, 2015, 392(21):87-101.
[27] Forster H J. Composition and Origin of Intermediate Solid Solutions in the System Thorite-Xenotime-Zircon-Coffinite[J]. Elsevier B V, 2006, 88:35-55.
[28] Pal D C, Rhede D. Geochemistry and Chemical Dating of Uraninite in the Jaduguda Uranium Deposit, Singhbhum Shear Zone, India-Implications for Uranium Mineralization and Geochemical Evolution of Uraninite[J]. Economic Geology, 2013, 108:1499-1515.
[29] 丘志力, 梁冬云, 王艳芬, 等. 巴尔哲碱性花岗岩锆石稀土微量元素、U-Pb年龄及其成岩成矿指示[J]. 岩石学报, 2014, 30(6):1757-1768. Qiu Zhili, Liang Dongyun, Wang Yanfen, et al.Zircon REE, Trace Element Characteristics and U-Pb Chronology in the Baerzhe Alkaline Granite:Implications to the Petrological Genesis and Mineralization[J]. Acta Petrologica Sinica, 2014, 30(6):1757-1768.
[30] Pekov I V, Zubkova N V, Chukanov N V, et al. Fluorbritholite-(Y), (Y, Ca, Ln)5[(Si, P)O4]3 F, A New Mineral of the Britholite Group[J]. Neues Jahrbuch fur Mineralogie-Abhandlungen, 2011, 188(2):191-197.
[31] Boynton W V. Cosmochemistry of the Rare Earth Elements:Meteorite Studies[C]//Henderson P. Rare Earth Elements Geochemistry. Amsterdam:Elsevier, 1984:63-114.
[32] 周玲棣, 王扬传. 碱性岩中磷灰石、榍石和锆石的稀土元素地球化学特征[J].地球化学,1988,3:224-233. Zhou Lingdi, Wang Yangchuan. REE Geochemical Characteristics of Apatite, Sphene and Zircon from Alkaline Rocks[J]. Geochimica, 1988, 3:224-233.
[33] 李占游. 西北某花岗岩型碱交代热液铀矿床稀土元素地球化学[J]. 铀矿地质, 1987, 8(3):175-183. Li Zhanyou. Rare Earth Element Geochemistry of Granite-Type Hydrothermal Uranium Deposits with Alkaline Metasomiatism in Northwest China[J]. Uranium Geology, 1987, 8(3):175-183.
[34] Schwinn G, Markl G. REE Systematics in Hydro-thermal Fluorite[J]. Chemical Geology, 2005, 216:225-248.
[35] Bozkaya O, Bozkaya G, Uysal I T, et al. Illite Occurrences Related to Volcanic-Hosted Hydrothermal Mineralization in the Biga Peninsula, NW Turkey:Implications for the Age and Origin of Fluids[J]. Ore Geology Reviews, 2016(76):35-51.
[36] 赵岩, 黄钰涵, 梁坤, 等. 西南三江地区镇沅金矿载金黄铁矿稀土与微量元素特征[J]. 岩石学报, 2015, 31(11):3297-3308. Zhao Yan, Huang Yuhan, Liang Kun, et al. Rare Earth Element and Trace Element Features of Auriferous Pyrite in the Zhenyuan Gold Deposit,Sanjiang Region,Yunnan Province, China[J]. Acta Petrologica Sinica, 2015, 31(11):3297-3308.
[37] 韩松, 董金泉, 于福生, 等.中子活化分析花岗岩中造岩矿物的稀土和微量元素特征[J]. 核技术, 2005, 28(6):445-448. Han Song, Dong Jinquan,Yu Fusheng, et al. Characterization of Rare Earth Elements and Trace Elements in the Rock-Forming Minerals of Granite by INAA[J]. Nuclear Techniques, 2005, 28(6):445-448.
[38] 张成江, 王德荫, 傅永全. 铀矿物学[M]. 北京:原子能出版社, 2007:3-4. Zhang Chengjiang, Wang Deyin, Fu Yongquan. Uranium Mineralogy[M]. Beijing:Atomic Energy Press, 2007:3-4.
[39] Mercadier J, Cuney M, Lach P, et al. Origin of Uranium Deposits Revealed by Their Rare Earth Element Signature[J]. Terra Nova, 2011, 23:264-269.
[40] Louise A, Fisher James S, Cleverley M P, et al. 3D Representation of Geochem Ical Data, the Corresponding Alteration and Associated REE Mobility at the Ranger Uranium Deposit, Northern Territory, Australia[J]. Miner Deposita, 2013, 48:947-966.
[41] 张学权, 季树藩, 王思龙, 等. 相山矿田热液成矿作用的地球化学演化[J]. 放射性地质, 1982(5):412-416. Zhang Xuequan, Ji Shufan, Wang Silong, et al. Geochemical Evolution of Hydrothermal Mineralization in Xiangshan Orefield[J]. Radioactive Geology, 1982(5):412-416.
[42] Williams-Jones A E, Midgisov A A, Samson I M. Hydrothermal Mobilisation of the Rare Earth Elements:A Tale of "Ceria" and "Yttria"[J]. Elements, 2012, 8(5):355-360.
[43] Gieré R. Formation of Rare Earth Minerals in Hydro-thermal Systems[C]//Jones A P, Wall F, Williams C T. Rare Earth Minerals:Chemistry, Origin and Ore Deposits. London:Chapman and Hall, 1996:105-150.
[44] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M]. 北京:科学出版社, 1986:194-209. Liu Yingjun, Cao Liming, Li Zhaolin, et al. Reservoir Geochemistry[M]. Beijing:Science Press, 1986:194-209.
[45] 孟秀丽, 季宏兵. 赣南小流域水体中溶解态稀土元素地球化学特征[J]. 中国稀土学报, 2007, 25(5):625-631. Meng Xiuli, Ji Hongbing. Contents and Distribution Pattern of Dissolved Rare Earth Elements in Ganjiang River in the Southern Jiangxi Province[J]. Journal of the Chinese Rare Earth Society, 2007, 25(5):625-631.
[46] Bau M, Moller P. Rare Earth Element Fractionation in Metamorphogenic Hydrothermal Calcite, Magnesite and Siderite[J]. Mineral Petrol, 1992, 45(3):231-246.
[47] 范洪海, 凌洪飞, 王德滋, 等.相山铀矿田成矿机理研究[J]. 铀矿地质, 2003, 19(4):208-213. Fan Honghai, Ling Hongfei, Wang Dezi, et al. Study on the Metallogenic Mechanism of Xiangshan Uranium Ore Field[J]. Uranium Geology, 2003, 19(4):208-213.
[1] Ye Yunfei, Sun Jianguo, Zhang Yiming, Xiong Kai. Construction of Low-Frequency Model with Three-Dimensional Tomographic Velocity Inversion and Application in Deep-Water Bock W of South China Sea [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1253-1259.
[2] Wang Wentian, Liu Sixin, Lu Qi, Li Hongqing, Fu Lei. 3D Imaging Algorithm of Directional Borehole Radar Based on Improved Residual Method [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 402-410.
[3] Jing Xianqing, Yang Zhenyu, Tong Yabo, Wang Heng, Xu Yingchao. A SHRIMP U-Pb Zircon Geochronology of a Tuff Bed from the Bottom of Liantuo Formation in the Three Gorges Area and Its Geological Implications [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 165-180.
[4] Yin Changchun, Lu Yongchao, Liu Yunhe, Zhang Bo, Qi Yanfu, Cai Jing. Multigrid Quasi-Linear Approximation for Three-Dimensional Airborne EM Forward Modeling [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 252-260.
[5] Chen Hui, Yin Min, Yin Changchun, Deng Juzhi. Three-Dimensional Magnetotelluric Modelling Using Aggregation-Based Algebraic Multigrid Method [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 261-270.
[6] An Zhenfang, Zhang Jin, Zhang Jianzhong. Geometry Optimization Design of Three Dimensional Marine Vertical Cable [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 271-284.
[7] Li Dajun, Weng Aihua, Yang Yue, Li Sirui, Li Jianping, Li Shiwen. Three-Dimension Forward Modeling and Characteristics for Surface-Borehole Transient Electromagnetic by Using Staggered-Grid Finite Difference Method [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(5): 1552-1561.
[8] Tan Jiahua, Lei Hongwu. Three Dimension Model Construction for TOUGH2 Based on GMS and Comparison of Simulations [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1229-1235.
[9] Wu Di, Zhuang Tingxin, Tian Li, Liu Xiaodong, Li Weimin. Geological Features and Ore Genesis of Huanggou Uranium Deposit in Eastern Liaoning Uranium Metallogenic Belt [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 452-463.
[10] Liu Jin, Liu Zhenghong, Zhao Chen, Peng Youbo, Wang Chujie, Yang Zhongjie, Dou Shiyong. Discovery of the Late Archean Supracrustal Rock to the North of Qinghe Fault in Liaoning Province and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2): 497-510.
[11] Fu Yanling, Luo Zujiang, Liao Xiang, Zhang Jianmang. A Three-Dimensional Full Coupling Model to Simulate and Predict Land Subsidence Caused by High-Rise Building [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1781-1789.
[12] Zhang Peng, Yang Hongzhi, Li Bin, Kou Linlin, Yang Fengchao. Ore Source, Ore-Forming Age and Geodynamic Setting of Yaojiagou Molybdenum Deposit in Qingchengzi Ore-Clustered Area, Eastern Liaoning Province [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1684-1696.
[13] Sun Zhenjun, Sun Guosheng, Yu Henan, Xiang Zhu, Tian Yi, Liu Tong, Chen Xu, Li Yang. Chronology and Geochemical Characteristics of Zhuanshanzi Granite in Chifeng and Its Diagenetic Dynamics Background [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1740-1753.
[14] Chen Bin, Li Zhuang, Wang Jialin, Zhang Lu, Yan Xuelong. Liaodong Peninsula ~2.2 Ga Magmatic Event and Its Geological Significance [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 303-320.
[15] Gao Fuhong, Wang Lei, Xu WenLiang, Wang Feng. Age and Provenance of the Late Paleozoic Strata in Lesser Xing'an Range: Evidence from Field Geology and Detrital Zircon U-Pb Ages [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(2): 469-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!