Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (3): 900-908.doi: 10.13278/j.cnki.jjuese.20170282
Previous Articles Next Articles
Hu Ning, Liu Cai
CLC Number:
[1] Biot M A. General Theory of Three-Dimensional Con-solidation[J]. J Appl Phys, 1941, 12:155-164. [2] Dvorkin J, Nur A. Dynamic Poroelasticity:A Unified Model with the Squirt and the Biot Mechanisms[J]. Geophysics, 1993,58:524-533. [3] Diallo M S, Appel E. Acoustic Wave Propagation in Saturated Porous Media:Reformulation of the Biot/Squirt Flow Theory[J]. J Appl Geophys, 2000, 44:313-325. [4] Liu Q R, Katsube N J. The Discovery of a Second Kind of Rotational Wave in Fluid Filled Porous Material[J]. The Journal of the Acoustical Society of America, 1990, 88(2):1045-1053. [5] Kjartansson E. Constant-Q Wave Propagation and At-tenuation[J]. Journal of Geophysical Research, 1979, 84:4737-4748. [6] Carcione J M. Time-Domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives[J]. Pure and Applied Geophys, 2002, 159:1719-1736. [7] Podlubny. Fractional Differential Equations[Z]. San Diego:Academic Press, 1999. [8] Sprouse B P. Computational Efficiency of Fractional Diffusion Using Adaptive Time Step Memory[Z]. Dissertations & Theses-Gradworks, 2010. [9] Caputo M, Mainardi F. Linear Models of Dissipation in Anelastic Solids[J]. La Rivista del Nuovo Cimento, 1971, 1(2):161-198. [10] 林孔容. 关于分数阶导数的几种不同定义的分析与比较[J]. 闽江学院学报, 2003, 24(5):3-6. Lin Kongrong, Analysis and Comparision of Different Definition About Fractional Integrals and Derivatives[J]. Journal of Minjiang University, 2003,24(5):3-6. [11] 卢明辉,巴晶,杨慧珠. 含粘滞流体孔隙介质中的弹性波[J].工程力学,2009,26(5):36-40. Lu Minghui,Ba Jing,Yang Huizhu. Propagation of Elastic Waves in a Viscous Fluid-Saturated Prorous Solid[J]. Engineering Mechanics, 2009, 26(5):36-40. [12] Yang D H, Zhang Z J. Poroelastic Wave Equation Including the Biot/Squirt Mechanism and the Solid/Fluid Coupling Anisotropy[J]. Wave Motion, 2002, 35(3):223-245. [13] 刘财,兰慧田,郭智奇,等. 基于改进BISQ机制的双相HTI介质波传播伪谱法模拟与特征分析[J].地球物理学报, 2013, 56(10):3461-3473. Liu Cai, Lan Huitian, Guo Zhiqi, et al. Pseudo-Spectral Modeling and Feature Analysis of Wave Propagation in Two-Phase HTI Medium Based on Reformulated BISQ Mechanism[J]. Chinese Journal of Geophysics, 2013, 56(10):3461-3473. [14] Qiao Z H. Theory and Modelling of Viscoelastic Ani-sotropic Media Using Fractional Time Derivative[C]//78th EAGE Conference & Exhibition 2016.[S. l.]:EAGE, 2016. [15] 董良国,马在田,曹景忠. 一阶弹性波动方程交错网格高阶差分解法稳定性研究[J]. 地球物理学报,2000,43(6):856-864. Dong Liangguo, Ma Zaitian, Cao Jingzhong. A Study on Stability of the Staggered-grid High-Order Difference Method of First-Order Elastic Wave Equation[J]. Chinese Journal of Geophysics,2000, 43(6):856-864. [16] Cerjan C, Kosloff D, Kosloff R, et al. A Nonref-lecting Boundary Condition for Discrete Acoustic and Elastic Wave Equation[J]. Geophysics, 1985, 50(4):705-708. |
[1] | GUO Zhi-qi, LIU Cai, FENG Xuan, HAN Yan-yan, WANG Xiao-huan. Attenuation Anisotropy and AVO Analysis [J]. J4, 2010, 40(2): 432-438. |
|