Journal of Jilin University(Earth Science Edition) ›› 2019, Vol. 49 ›› Issue (2): 603-610.doi: 10.13278/j.cnki.jjuese.20180022

Previous Articles     Next Articles

Oil Sands Spectral Reflection Characteristics and Remote Sensing Application

Fan Ruixue1, Xing Lixin1, Pan Jun1, Shan Xuanlong2, Zhong Weijing1   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2018-02-01 Online:2019-03-26 Published:2019-03-28
  • Supported by:
    Supported by National Science and Technology Major Project (2011ZX05028-002), Science and Technology Project of PetroChina Company Limited (2013E-050102) and Project of China Geological Survey (1212010761502)

Abstract: Oil sands, as an important part of the world's energy of 21st century, have been studied by a lot of geological workers on their geological characteristics of formation and distribution of metallogenic belt and so on, rather than remote sensing exploration. The basis of identification of different features by remote sensing technology is the reflectivity difference at the same wavelength position and the variation of reflectivity with wavelength.In this study, the authors got the spectral reflectance characteristics through analyzing the spectral data of oil sands. In order to recognize oil sands on remote sensing satellite image of Landsat 8 OLI, based on the oil spectrum characteristics and the correspondingcorrelation analysis, two recognition models were proposed and applied to the two research areas of Lenghu and Mahai in Qaidam basin. The results show that it is feasible to use remote sensing image to detect oil sands prospecting target area; the oil sands extraction model based on correlation analysis is better than the spectral feature analysis model; the ratio method is better in improving the oil sands remote sensing information in Lenghu area, while the difference method is better in Mahai area.

Key words: oil sands, spectral reflectance, Landsat 8 OLI, remote sensing, identify

CLC Number: 

  • P627
[1] 单玄龙,车长波,李剑,等.国内外油砂资源研究现状[J].世界地质,2007,26(4):459-464. Shan Xuanlong,Che Changbo,Li Jian,et al.Present Status of Oil Sand Resources at Home and Abroad[J].Global Geology,2007,26(4):459-464.
[2] 曹鹏,邹伟宏,戴传瑞,等.油砂研究概述[J].新疆石油地质,2012(6):747-750. Cao Peng,Zou Weihong,Dai Chuanrui,et al.A Review of Oil Sands[J].Xinjiang Petroleum Geology,2012(6):747-750.
[3] Rubinstein I,Strausz O P,Spyckerelle C,et al.The Origin of the Oil Sand Bitumens of Alberta:A Chemical and a Microbiological Simulation Study[J].Geochimica et Cosmochimica Acta,1977,41(9):1341-1353.
[4] Desando M A,Lahajnar G,Ripmeester J A,et al.The Low Temperature Oxidation of Athabasca Oil Sand Asphaltene Observed from 13C,19F and Pulsed Field Gradient Spin-Echo Proton nmr Spectra[J].Fuel,1999,78(1):31-45.
[5] 刘春,张惠良,沈安江,等.川西北地区泥盆系油砂岩地球化学特征及成因[J].石油学报,2010,31(2):253-258. Liu Chun,Zhang Huiliang,Shen Anjiang,et al.Geochemistry Characteristics and Origin of the Devonian Oil-Sandstone in the Northwest of Sichuan Basin[J].Acta Petrolei Sinica,2010,31(2):253-258.
[6] Osacky M, Geramian M, Ivey D G, et al.Mineralogical and Chemical Composition of Petrologic End Members of Alberta Oil Sands[J].Fuel,2013,113(11):148-157.
[7] 张国珍,龙泉.准噶尔盆地东部北27井区含油砂体的定量解释[J].石油地球物理勘探,1990,25(5):639-644. Zhang Guozhen,Long Quan.Quantitative Interpretation of Oil Sands in North 27 Well Zone in Eastern Junggar Basin[J].Oil Geophysical Prospecting,1990,25(5):639-644.
[8] Eastwood J.Temperature-Dependent Propagation of P-and S-Waves in Cold Lake Oil Sands:Comparison of Theory and Experiment[J].Geophysics,1993,58(6):863-872.
[9] 于福生,王彦华,李学良,等.柴达木盆地狮子沟-油砂山构造带变形特征及成因模拟[J].大地构造与成矿学,2011,35(2):207-215. Yu Fusheng,Wang Yanhua,Li Xueliang,et al.Deformation Characteristics and Genesis Simulation of the Shizigou Youshashan Structural Belt in Qaidamu Basin[J].Geotectonica et Metallogenia,2011,35(2):207-215.
[10] Flach P D.Oil Sands Geology:Athabasca Deposit North[D].Edkmonton:Alberta Research Council,1984.
[11] 黄籍中,冉隆辉.四川盆地震旦系灯影灰岩黑色沥青与油气勘探[J].石油学报,1989,40(1):27-36. Huang Jizhong,Ran Longhui.Bitumen and Oil-Gas Exploration in Sinian "Denying Limestone" in Sichuan Basin[J].Acta Petrolei Sinica,1989,40(1):27-36.
[12] 王清斌,单玄龙,臧春艳,等.楚雄盆地洒芷油砂地质特征及成藏模式[J].世界地质,2007,26(1):52-57. Wang Qingbin,Shan Xuanlong,Zang Chunyan,et al.Geological Characteristics and Forming Pattern of Sazhi Oil Sand in Chuxiong Basin[J].Global Geology,2007,26(1):52-57.
[13] 石勇,侯贵廷,钟尚伦,等.柴达木盆地乌南油田下油砂山组成岩作用研究[J].天然气地球科学, 2012,23(5):909-915. Shi Yong,Hou Guiting,Zhong Shanglun,et al.Study on Diagenesis of Lower Youshashan Formation of Wunan Oil Field in Qaidam Basin[J].Natural Gas Geoscience,2012,23(5):909-915.
[14] 浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000. Pu Ruiliang,Gong Peng.Hyperspectral Remote Sensing and Its Applications[M].Beijing:Higher Education Press,2000.
[15] 陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998. Chen Shupeng,Tong Qingxi,Guo Huadong.Remote Sensing Information Mechanism Research[M].Beijing:Science Press,1998.
[16] 张宗贵,王润生,郭大海,等.成像光谱岩矿识别方法技术研究和影响因素分析[M].北京:地质出版社,2006. Zhang Zonggui,Wang Runsheng,Guo Dahai,et al.Study on Rock Ore Identification by the Spectral Imaging Technique and Influence Factors Analysis[M]. Beijing:Geological Publishing House,2006.
[17] 童庆禧.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990. Tong Qingxi.Editorial Board of Spectra and Analysis of Typical Earth Objects of China[M].Beijing:Science Press,1990.
[18] 岩石中氯仿沥青的测定:SY/T 5118-2005[S].北京:国家发展和改革委员会,2005. Determination of Bitumen from Rocks by Chloroform Extraction:SY/T 5118-2005[S].Beijing:National Development and Reform Commission,2005.
[19] 张玉君.Landsat 8简介[J].国土资源遥感,2013,25(1):176-177. Zhang Yujun.Landsat 8 Brief Introduction[J].Remote Sensing for Land & Resources,2013,25(1):176-177.
[20] 尤金凤,邢立新,潘军,等.基于Hyperion数据的油砂分布遥感研究[J].吉林大学学报(地球科学版),2016,46(5):1589-1597. You Jinfeng,Xing Lixin,Pan Jun,et al.Application of Hyperion Hyperspectral Image for Studying on the Distribution of Oil Sands[J].Journal of Jilin University (Earth Science Edition),2016,46(5):1589-1597.
[1] Li Gang, Sun Guihua, Yao Yongjian, Zhu Boqin, Zhang Yaoming. Spatio-Temporal Evolution of the Sansha Bay Coastline [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 196-205.
[2] Wang Mingchang, Zhang Xinyue, Zhang Xuqing, Wang Fengyan, Niu Xuefeng, Wang Hong. GF-2 Image Classification Based on Extreme Learning Machine [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 373-378.
[3] Yan Baizhong, Qiu Shuwei, Xiao Changlai, Liang Xiujuan. Potential Geothermal Fields Remote Sensing Identification in Changbai Mountain Basalt Area [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1819-1828.
[4] Zhang Shiyue, Shu Longcang, Min Xing, Hu Huijie, Zou Zhike. Calculation of Precipitation Infiltration Recharge Based on Land-Use Type [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 860-867.
[5] You Jinfeng, Xing Lixin, Pan Jun, Shan Xuanlong, Fan Ruixue, Cao Hui. Application of Hyperion Hyperspectral Image for Studying on the Distribution of Oil Sands [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1589-1597.
[6] Peng Ling, Xu Suning, Peng Junhuan. Regional Landslide Risk Assessment Using Multi-Source Remote Sensing Data [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 175-186.
[7] Zhou Linfei, Chen Qixin, Cheng Qian, Zhang Jing. Remote Sensing Classification Information Extraction Based on Rough Set Theory [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1246-1256.
[8] Huang Shaolin, Xu Hanqiu, Wang Lin. Influence of Calibration Parameter File (CPF) to Radiometric Correction on Landsat TM/ETM+ [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(4): 1382-1387.
[9] Tang Fei, Xu Hanqiu. Quantitative Relationship Between Impervious Surface and Land Surface Temperature Based on Remote Sensing Technology [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1987-1996.
[10] Gu Lingjia, Zhao Kai, Ren Ruizhi, Sun Jian. Comparsion of Two Passive Microwave Unmixing Methods [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2057-2064.
[11] Zhu Changming, Li Junli,Zhang Xin, Luo Jiancheng, Shen Zhanfeng. Wetlands Mapping and Spatio[CD*2]Temporal Change Analysis: A Case Study on Bosten Basin,Xinjiang [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 954-961.
[12] Wang Mingchang, Niu Xuefeng, Chen Shengbo, Wang Ya’nan, Wang Zijun. DART Model-Based Inversion of Leaf Area Index from PROBA/CHRIS Data [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 1033-1039.
[13] Cui Hanwen, Jiang Qigang, Xing Yu, Xu Chi, Lin Nan. Dynamics of Sandy Desertification Under Climate Disturbance in China from 1975 to 2007 [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 582-591.
[14] Chen Yong, He Zongfa, Li Bing, Zhao Baocheng. Spatial Distribution of Tidal Creeks and Quantitative Analysis of Its Driving Factors in Chongming Dongtan,Shanghai [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 212-219.
[15] Wang Xingdong, Li Xinwu, Xiong Zhangqiang, Liang Lei. Antarctic Freeze-Thaw Detection Based on Improved Cross-Polarized Gradient Ratio [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 306-311.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!