Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (5): 1473-1481.doi: 10.13278/j.cnki.jjuese.20200234

Previous Articles     Next Articles

Research on Semi-Rigid Base Materials Under Semi-Arid and Large Temperature Difference Environment

Chen Guang, Sheng Jingliang   

  1. Zhong Dian Jian Ji Jiao Expressway Investment Development Co., Ltd., Shijiazhuang 050051, China
  • Received:2020-10-20 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Science and Technology Project of Hebei Provincial Department of Transportation(TH-201918) and the General Project of Natural Science Foundation of Hebei Province (E2018201106)

Abstract: In order to study the influencing factors of the deformation of the water-stable base, a systematic experimental study was carried out on the cement content, variety, and gradation design. The dry shrinkage test and temperature shrinkage test were conducted through skeleton dense cement stabilized crushed stone, suspended dense cement stabilized crushed stone, and skeleton void cement stabilized crushed stone. Using the Origin to perform regression fitting on the test data, the deformation law of the semi-rigid base material was obtained, thereby improving the durability of the asphalt pavement. The results showed that:1) The dry shrinkage coefficient of the skeleton void structure increased by two times in 0-7 days, and the increase of the dry shrinkage coefficient was moderated. The dry shrinkage degree of the skeleton void structure was the lowest at the same cement content, that is, the skeleton void structure cement could effectively reduce the cracking of the water-stabilized base. 2) In cement stabilized gravel, the temperature shrinkage deformation of each temperature section increased gradually with the increase of the cement content, the temperature shrinkage deformation was the largest in the high temperature zone at 50-60℃, and the deformation became smaller as the temperature decreased; In the range of 0-10℃, the temperature shrinkage deformation of the section was the smallest, so the cement stabilized crushed stone is more suitable for the low temperature area in the north. 3) For the same cement content and cement grade, the average temperature shrinkage coefficient of the skeleton void is the smallest, the suspended dense type is the largest, and the skeleton dense type is in the middle. Therefore, the skeleton void structure cement can effectively reduce the cracking of the water-stable base. Through a large number of experimental studies, the skeletal void structure has the best temperature shrinkage resistance, cement 42.5 has better dry shrinkage resistance, and cement 32.5 has better temperature shrinkage resistance.

Key words: semi-arid, dry shrinkage test, temperature shrinkage test, semi-rigid base

CLC Number: 

  • U416.1
[1] 洪亮, 刘涛, 杨三强. 水泥稳定砾石骨料振动与击实成型对比试验[J]. 重庆交通大学学报(自然科学版), 2014, 33(6):63-67. Hong Liang, Liu Tao, Yang Sanqiang. Comparative Experiment on Vibrating Compaction and Modified Proctor Compaction of Silt Cement-Stabilized Gravel Aggregate[J]. Journal of Chongqing Jiaotong University (Natural Science), 2014, 33(6):63-67.
[2] 姜文亚, 宋泽章, 周立宏, 等.渤海湾盆地歧口凹陷地层压力结构特征[J]. 吉林大学学报(地球科学版), 2020, 50(1):52-69. Jiang Wenya, Song Zezhang, Zhou Lihong, et al. Characteristics of Formation-Pressure-Structure of Qikou Sag, Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(1):52-69.
[3] 宋亮, 王选仓. 新疆盐渍土地区水泥稳定基层盐胀变形规律及机理[J]. 公路交通科技, 2019, 36(7):20-28. Song Liang, Wang Xuancang. Salt Heaving Deformation Rule and Mechanism of Cement Stabilized Base of Saline Areas in Xinjiang[J]. Journal of Highway and Transportation Research and Development, 2019, 36(7):20-28.
[4] 孙洪伟, 傅汝进.季冻土区临水轻台结构冻拔特征分析及防治[J]. 吉林大学学报(地球科学版), 2019, 49(5):1405-1414. Sun Hongwei, Fu Rujin. Feature Analysis and Control of Frost Heave to Waterfront Light Platform Structure in Seasonal Frozen Soil Region[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5):1405-1414.
[5] 高伟, 李秀凤, 崔巍. 基于多板协同受力的前嫩公路水泥混凝土路面应力有限元分析[J]. 公路交通科技, 2019, 36(4):1-7. Gao Wei, Li Xiufeng, Cui Wei. Finite Element Analysis on Stress in Cement Concrete Pavement of Qiannen Highway Based on Multi-Slab Co-Sstess[J]. Journal of Highway and Transportation Research and Development, 2019, 36(4):1-7.
[6] 张美娜, 赵同峰, 徐刚. 添加剂对纤维混凝土性能影响[J]. 公路交通科技, 2019, 36(10):52-58. Zhang Meina, Zhao Tongfeng, Xu Gang. Influence of Additives on Fiber Reinforced Concrete[J]. Journal of Highway and Transportation Research and Development, 2019, 36(10):52-58.
[7] 王旭东, 周兴业. 基于材料非线性的沥青路面结构当量力学分析方法[J]. 中国公路学报, 2019, 32(8):25-34. Wang Xudong, Zhou Xingye. Equivalent Mechanical Method for Asphalt Pavement Structure Based on Material Nonlinearity[J]. China Journal of Highway and Transport, 2019, 32(8):25-34.
[8] 王复明, 李文辉, 郭成超, 等. 基于高聚物渗透注浆的半刚性基层路面承载性能恢复研究[J]. 北京交通大学学报, 2019, 43(3):1-7. Wang Fuming, Li Wenhui, Guo Chengchao, et al. Research on Bearing Performance Recovery of Semi-Rigid Base Pavement on the Basis of Permeable Polymer Grouting[J]. Journal of Beijing Jiaotong University, 2019, 43(3):1-7.
[9] 周浩, 沙爱民, 胡力群. 半刚性基层材料疲劳试验[J]. 长安大学学报(自然科学版), 2012, 32(3):6-10. Zhou Hao, Sha Aimin, Hu Liqun. Test on Fatigue Property of Semi-Rigid Base Material[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(3):6-10.
[10] 王一琪, 谭忆秋, 王兴隆, 等. 基于MMLS3的半刚性基层沥青路面材料冻融试验研究[J]. 公路, 2017, 62(5):204-208. Wang Yiqi, Tan Yiqiu, Wang Xinglong, et al. Research on Freezing and Thawing Test of Semi-Rigid Base Asphalt Pavement Based on MMLS3[J]. Highway, 2017, 62(5):204-208.
[11] 延西利, 艾涛, 游庆龙, 等. 半刚性基层沥青路面的热传导试验特性[J]. 长安大学学报(自然科学版), 2016, 36(5):1-7. Yan Xili, Ai Tao, You Qinglong, et al. Experimental Characteristics of Heat Conduction of Semi-Rigid Base Asphalt Pavement[J]. Journal of Chang'an University (Natural Science Edition), 2016, 36(5):1-7.
[12] 吕松涛, 郑健龙, 仲文亮.养生期水泥稳定碎石强度、模量及疲劳损伤特性[J]. 中国公路学报, 2015, 28(9):9-15. Lü Songtao, Zheng Jianlong, Zhong Wenliang. Characteristics of Strength, Modulus and Fatigue Damage for Cement Stabilized Macadam in Curing Period[J]. China Journal of Highway and Transport, 2015, 28(9):9-15.
[13] 蒋应军, 李明杰, 张俊杰, 等.水泥稳定碎石强度影响因素[J]. 长安大学学报(自然科学版), 2010, 30(4):1-7. Jiang Yingjun, Li Mingjie, Zhang Junjie, et al. Influence Factors of Strength Properties of Cement Stabilization of Crushed Aggregate[J]. Journal of Chang'an University (Natural Science Edition), 2010, 30(4):1-7.
[14] 田宇翔, 马骉, 王大龙, 等.冻融循环作用下水泥稳定碎石抗冻特性[J]. 长安大学学报(自然科学版), 2017, 37(4):84-91. Tian Yuxiang, Ma Biao, Wang Dalong, et al. Freeze Resistance Characteristics of Cement-Stabilized Macadam Under Freeze-Thaw Cycle[J]. Journal of Chang'an University(Natural Science Edition), 2017, 37(4):84-91.
[15] Ling C, Zhou L, Gu F. The Application of Extension Theory on Pavement Performance Evaluation[J]. Advanced Materials Research, 2010, 168/169/170:111-115.
[16] 罗迪, 吴超凡. 级配与压实标准对水泥稳定碎石材料性能的影响[J]. 公路, 2014, 59(4):187-193. Luo Di, Wu Chaofan. The Effect of Gradation and Compaction Standards on the Performance of Cement Stabilized Crushed Stone Materials[J]. Highway, 2014, 59(4):187-193.
[17] Bao Jining, Zhang Yunzhou, Su Xiaolin, et al. Unpaved Road Detection Based on Spatial Fuzzy Clustering Algorithm[J]. Eurasip Journal on Image and Video Processing, 2018, 33(5):114-116.
[18] 李娜, 魏连雨, 张静. 水泥稳定碎石早期损伤自愈合疲劳特性试验研究[J]. 硅酸盐通报, 2017, 36(8):2804-2809. Li Na, Wei Lianyu, Zhang Jing. Experimental Study on Fatigue Performance of Early Damage Cement Stabilized Macadam in the Process of Self-Healing[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(8):2804-2809.
[1] Huang Qibo, Qin Xiaoqun, Liu Pengyu, Kang Zhiqiang, Tang Pingping. Applicability of Karst Carbon Sinks Calculation Methods in Semi-Arid Climate Environment [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 240-246.
[2] WANG Wen-ke, YANG Ze-yuan, CHENG Dong-hui, WANG Wen-ming, YANG Hong-bin. Methods of Ecology-Oriented Groundwater Resource Assessment in Arid and Semi-Arid Area [J]. J4, 2011, 41(1): 159-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Chun-bai,ZHANG Xin-tao,LIU Li,REN Yan-guang,MENG Peng. The Thermal Fluid Activities and Their Modification on Volcaniclastic Rock in Budate Group-An Example from the Beier Sag of Hailaer Basin[J]. J4, 2006, 36(02): 221 -0226 .
[2] ZOU Xin-ning,SUN Wei,ZHANG Meng-bo,WAN Yu-jun. The Application of Seismic Attributes Analysis to Lithologic Gas Reservoir Description[J]. J4, 2006, 36(02): 289 -0294 .
[3] GUO Hong-jin, LI Yong, ZHONG Jian-hua, WANG Hai-qiao. Carbonate Reservoir Properties in Member 1 of Shahejie Formation of Paleogene in the Dongxin Oilfield, Shandong Province[J]. J4, 2006, 36(03): 351 -357 .
[4] DU Ye-bo,JI Han-cheng,ZHU Xiao-min. Research on the Diagenetic Facies of the Upper Triassic Xujiahe Formation in the Western Sichuan Foreland Basin[J]. J4, 2006, 36(03): 358 -364 .
[5] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .
[6] SU Ji-jun, YIN Kun, GUO Tong-tong. Optimization of the JointThread of Diamond WireLine Coring Drill Pipe[J]. J4, 2005, 35(05): 677 -680 .
[7] TANG Jian-sheng, XIA Ri-yuan, ZOU Sheng-zhang, LIANG Bin. Characteristics of Karst Medium System and Its Hydrogeologic Effect in the South Tianshan, Xinjiang[J]. J4, 2005, 35(04): 481 -0486 .
[8] XIONG Bin. Inverse Spline Interpolation for the Calculation of All-Time Resistivity for the Large-Loop Transient Electromagnetic Method[J]. J4, 2005, 35(04): 515 -0519 .
[9] DU Chun-guo, ZOU Hua-yao, SHAO Zhen-jun,ZHANG Jun. Formation Mechanism and Mode of Sand Lens Reservoirs[J]. J4, 2006, 36(03): 370 -376 .
[10] XU Sheng-wei,WANG Ming-chang,BAI Ya-hui,ZHANG Xue-ming. A Study and Implementation of the Distributed Publication Service of Massive Imagery Data Based on J2EE[J]. J4, 2006, 36(03): 491 -496 .