Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (5): 1578-1586.doi: 10.13278/j.cnki.jjuese.20200283

Previous Articles     Next Articles

Relationship Between Shaft Failure with Stress-Relief Groove and Groundwater Level in Thick Loose Strata

Pan Weiqiang1, Zhang Liming2, Cong Yu2   

  1. 1. Qingdao Haichuan Construction Group Co., Ltd., Qingdao 266033, Shandong, China;
    2. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
  • Received:2020-11-20 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Natural Science Foundation in Shandong Province (ZR2020ME099)

Abstract: In order to solve the problem of failure criterion of concrete shafts in thick loose strata, the numerical limit strain method is used to analyze the change of shaft strain value,that is, when the strain of element circumferential connection reaches the limit strain value in the shaft, the calculation of non-convergence is taken as the criterion for the overall failure criterion of the shaft. In this study, two numerical calculation models of wellbore with and without pressure relief grooves were established respectively, as the stress-relief groove has a vertical pressure relief function. The calculations show that the soil around the shaft was destroyed before the shaft at 181-183 m. The shaft without stress-relief groove failed at 181-182 m when the groundwater level dropped by 27 m; While the shaft with stress-relief groove failed at 182-183 m when the groundwater level dropped by 38 m. At present, the groundwater level has dropped by 20 m, so the shaft is safe. The numerical ultimate calculation result is consistent with the actual monitoring value.

Key words: thick loose strata, concrete shaft, numerical ultimate strain method, stress-relief groove, groundwater level

CLC Number: 

  • TD265
[1] 陈湘生. 华东地区立井井壁破坏原因浅析[J]. 建井技术, 1997, 18(6):1-3. Chen Xiangsheng. Analysis on the Causes of Shaft Wall Destruction in East China[J]. Mine Construction Technology, 1997, 18(6):1-3.
[2] 吕恒林, 崔广心. 深厚表土层中井壁结构破坏的力学机理[J]. 中国矿业大学学报, 1999, 28(6):539-543. Lü Henling, Cui Guangxin. Mechanical Mechanism of Shaft Wall Structure Failure in Deep Topsoil[J]. Journal of China University of Mining and Technology, 1999, 28(6):539-543.
[3] 张黎明, 杨建华, 张广学, 等. 深厚表土层井筒破坏预防性治理技术[J]. 煤炭科学科技, 2008, 36(4):46-49. Zhang Liming, Yang Jianhua, Zhang Guangxue, et al. Preventive Control Technology for Mine Shaft Damage in Deep Overburden[J]. Coal Science and Technology, 2008, 36(4):46-49.
[4] 毕思文. 徐淮地区煤矿竖井变形破坏特征与机理探讨[J]. 建井技术, 1997, 18(3):37-39. Bi Siwen. Discussion on Deformation and Failure Characteristics and Mechanism of Coal Mine Shaft in Xuhuai Area[J]. Mine Construction Technology, 1997, 18(3):37-39.
[5] 许延春, 耿得庸, 官云章, 等. 深厚含水松散层的工程特性及其在矿区的应用[M]. 北京:煤炭工业出版社, 2003. Xu Yanchun, Geng Deyong, Guan Yunzhang, et al. Engineering Characteristics of Deep Water-Bearing Loose Layer and Its Application in Mining Area[M]. Beijing:Coal Industry Press, 2003.
[6] 杨维好, 李峰, 王宗胜, 等. 冲积层疏排水与注浆过程中井壁应变变化规律实测研究[J]. 岩石力学与工程学报, 2007, 26(1):2713-2717. Yang Weihao, Li Feng, Wang Zongsheng, et al. Field Measurements for Strains in Shaft Lining in Alluvium During Drainage and Grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1):2713-2717.
[7] 经来旺, 张天勇, 徐辉东, 等. 矿区表土疏水沉降机理及其与井壁破裂的关系[J]. 煤田地质与勘探, 2003, 33(3):61-64. Jing Laiwang, Zhang Tianyong, Xu Huidong, et al. Relation Between the Seepage Sedimentation Mechanism of Soil in Mining Area and Shaft Rupture[J]. Coal Geology & Exploration, 2003, 33(3):61-64.
[8] 李文平. 深部土层失水变形时土与井壁相互作用试验与理论研究[J]. 岩土工程学报, 2000, 22(4):475-480. Li Wenping. Testing and Theoretical Studies on the Interaction Between Soil and Shaft Wall During Deep Soil Compression Due to Losing Water[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4):475-480.
[9] 彭向和, 杨春和. 复杂加载史下混凝土的损伤及其描述[J]. 岩石力学与工程学报, 2000, 19(2):157-164. Peng Xianghe, Yang Chunhe. The Damage and Its Description of Concrete Under Complex Loading History[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(2):157-164.
[10] 张楠, 程桦, 荣传新, 等. 冻结井高强混凝土损伤演化与渗透性关系[J]. 硅酸盐学报, 2018, 46(10):1366-1372. Zhang Nan, Cheng Hua, Rong Chuanxin, et al. Relation Between Damage Evolution and Permeability of High-Strength Concrete of Freezing Shaft Lining[J]. Journal of the Chinese Ceramic Society, 2018, 46(10):1366-1372.
[11] 荣传新, 王秀喜, 蔡海兵, 等. 基于流固耦合理论的煤矿立井井壁突水机理分析[J]. 煤炭学报, 2011, 36(12):1366-1372. Rong Chuanxin, Wang Xiuxi, Cai Haibing, et al. Analysis of Shaft Water Irruption Mechanismin Coal Mine Based on Fluid-Solid Coupling Theory[J]. Journal of China Coal Society, 2011, 36(12):1366-1372.
[12] 吴月秀, 刘滨, 远洋, 等. 复杂荷载作用下冻结凿井井壁损伤应力分析[J]. 金属矿山, 2010(8):42-45, 78. Wu Yuexiu, Liu Bin, Yuan Yang, et al. Stress Analysis on Freeze Sinking Sidewall's Damage Under Complicated Load[J]. Mental Mine, 2010(8):42-45, 78.
[13] 许良发. 深厚表土冻结井壁结构破裂机理及修复技术研究[J]. 煤炭技术, 2016, 35(12):98-101. Xu Liangfa. Fracture Mechanism and Remediation Technology of Frozen Shaft Lining in Thick Top Soil[J]. Coal Technology, 2016, 35(12):98-101.
[14] 王英杰, 赵光思, 董国庆. 立井井壁破裂前后应变演化分析[J]. 煤炭工程, 2013, 45(4):74-76. Wang Yingjie, Zhao Guangsi, Dong Guoqing. Analysis on Stress Evolution Before and After Mine Shaft Liner Broken[J]. Coal Engineering, 2013, 45(4):74-76.
[15] 葛晓光. 地面与破壁注浆治理井壁破裂灾害的工程分析[J]. 煤炭学报, 2002, 27(1):41-44. Ge Xiaoguang. Engineering Properties of Two Grouting Techniques in Mending Shaft-Lining[J]. Journal of China Coal Society, 2002, 27(1):41-44.
[16] 琚宜文, 刘宏伟, 王桂梁, 等. 卸压套壁法加固井壁的力学机理与工程应用[J]. 岩石力学与工程学报, 2003, 22(5):773-777. Ju Yiwen, Liu Hongwei, Wang Guiliang, et al. Mechanical Mechanism of Reinforcing Shaft-Wall with Pressure Release and Casing-Wall Method and Its Engineering Application[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5):773-777.
[17] 郑颖人. 岩土数值极限分析方法的发展与应用[J]. 岩石力学与工程学报, 2012, 31(7):1297-1316. Zheng Yingren. Development and Application of Numerical Limit Analysis for Materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7):1297-1316.
[18] 郑颖人, 孔亮. 岩土塑性力学[M]. 北京:中国建筑工业出版社, 2010. Zheng Yingren, Kong Liang. Geotechnical Plastic Mechanics[M]. Beijing:China Construction Press, 2010.
[19] 阿比尔的, 冯夏庭, 郑颖人. 岩土类材料应变分析与基于极限应变判据的极限分析[J]. 岩石力学与工程学报, 2015, 34(8):1552-1560. Abi Erdi, Feng Xiating, Zheng Yingren, et al. Strain Analysis and Numerical Analysis Based on Limit Strain for Geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8):1552-1560.
[20] 丛宇, 孔亮, 郑颖人, 等. 混凝土材料剪切强度的试验研究[J]. 混凝土, 2015, 34(5):40-45. Cong Yu, Kongliang, Zheng Yingren, et al. Experimental Study on Shear Strength of Concrete[J]. Concrete, 2015, 34(5):40-45.
[21] 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2011. Design Code for Concrete Structures:GB 50010-2010[S]. Beijing:China Industry Publishing House, 2011.
[1] Yan Baizhong, Sun Jian, Wang Xinzhou, Han Na, Liu Bo. Multivariable LSTM Neural Network Model for Groundwater Levels Prediction [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(1): 208-216.
[2] Liu Bo, Xiao Changlai, Liang Xiujuan. Application of Combining SOM and RBF Neural Network Model for Groundwater Levels Prediction [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 225-231.
[3] WANG Xin-Min, CUI Wei. Application of Changeable Weight Combination Forecasting Model to Groundwater Level Prediction [J]. J4, 2009, 39(6): 1101-1105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[2] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[3] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .
[4] ZHAO Feng,FAN Hai-feng,TIAN Zhu-jun, WANG Zhi-gang. Analysis of Different Land Use Patterns and Soil Erosion Change in the Middle of Jilin Province[J]. J4, 2005, 35(05): 661 -666 .
[5] XIAO Chang-lai , ZHANG Li-chun ,FANG Zhang ,JIA Tao. Research on Transform Relationship Between Surface Water and Groundwater in Taoer River Fan[J]. J4, 2006, 36(02): 234 -0239 .
[6] ZHANG Hui,LI Tong-lin,DONG Rui-xia. 3D Electromagnetic Inversion by Volume Integral Equation Method Based on Current Dipole Source[J]. J4, 2006, 36(02): 284 -0288 .
[7] ZHANG Fan-qin,WANG Wei-feng,WANG Jian-wei,SUN Fen-jin,LIU Rui-e. Dissolution of Tuff Filling and Its Effects on the Porosity of the Coalformed Gas Reservoir in the Suligemiao Area of the Ordos Basin[J]. J4, 2006, 36(03): 365 -369 .
[8] HUO Qiu-li, WANG Zhen-ying, LI Min,FU Li,FENG Da-chen. Study on the Source and Migration of Oil and Gases in the Beier Depression in the Hailaer Basin[J]. J4, 2006, 36(03): 377 -383 .
[9] JIANG Yue-hua,YIN Hong-fu,WANG Run-hua,KANG Xiao-jun. Distribution of Soil Magnetic Susceptibility and Heavy Metal Elementsand Their Correlativity in Huzhou City[J]. J4, 2005, 35(05): 653 -660 .
[10] QIN Li-juan, CAO Jian-feng,PING Jian-hua,JIANG Ji-yi, WANG Nan, SHEN Yuan-yuan, LI Sheng. Application of Fuzzy Mathematics in Evaluation of Water Resources Value in Zhengzhou City[J]. J4, 2005, 35(04): 487 -0490 .