Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (6): 1872-1880.doi: 10.13278/j.cnki.jjuese.20200195

Previous Articles     Next Articles

Distortion Correction and Synthetic-Aperture-Source Signal Enhancement Method of Marine Controlled-Source Electromagnetic Data

Wang Xuan1, Shen Jinsong1, Wang Zhigang2, Sun Weibin2   

  1. 1. College of Geophysics, China University of Petroleum, Beijing 102249, China;
    2. Bureau of Geophysical Prospecting INC., China National Petroleum Corporation, Zhuozhou 072750, Hebei, China
  • Received:2020-08-29 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Natural Science Foundation of China (41574124) and Technology Project of China National Petroleum Corporation (2017D-3505)

Abstract: Due to the late start of marine controlled-source electromagnetic (MCSEM) method in China,the current processing flow of marine EM data is relatively simple. In these classic data processing procedures, there is still a lack of processing methods for distorted EM data caused by reading and writing to storage device, ship speed, and long-line source moment changes. In this study, a spectrogram-based automatic suppression method was proposed for regular noise caused by storage device operation, the corresponding window-based distortion correction procedures were established for the interference of ship speed and long-line source moment changes, and finally, the synthetic aperture source technology was applied to further enhance the strength of the effective signal. The results of real field data processing indicate that by using these distortion correction and signal enhancement methods, the signal-to-noise ratio of EM data can be increased while enhancing the effective signal amplitude from the seafloor.

Key words: marine controlled-source electromagnetics, preprocessing, signal correction, synthetic aperture

CLC Number: 

  • P631
[1] Ellingsrud S, Eidesmo T, Johansen S, et al. Remote Sensing of Hydrocarbon Layers by Seabed Logging (SBL):Results from a Cruise Offshore Angola[J]. Geophysics, 2002, 21(10):972-982.
[2] Constable S, Srnka L J. An Introduction to Marine Controlled-Source Electromagnetic Methods for Hydrocarbon Exploration[J]. Geophysics, 2007, 72:3-12.
[3] 张文强, 殷长春, 刘云鹤, 等.基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J].吉林大学学报(地球科学版),2019,49(2):578-590. Zhang Wenqiang, Yin Changchun, Liu Yunhe, et al.Field Continuation for MCSEM Forward Modeling and Identification of Anisotropic Media[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(2):578-590.
[4] Constable S. Ten Years of Marine CSEM for Hydrocarbon Exploration[J]. Geophysics, 2010, 75:A67-A81.
[5] Behrens J. The Detection of Electrical Anisotropy in 35 Ma Pacific Lithosphere:Results from a Marine Controlled-Source Electromagnetic Survey and Implications for Hydration of the Upper Mantle[D]. San Diego:University of California, 2005.
[6] Lu X Y, Willen D, Zhang J, et al. Marine CSEM Data Processing Techniques[C]//2006 SEG Annual Meeting. Houston:Society of Exploration Geophysicists, 2006:704-708.
[7] Myer D, Constable S, Key K. Broad-Band Waveforms and Robust Processing for Marine CSEM Surveys[J]. Geophysical Journal International, 2001,184(2):689-698.
[8] Mattson J, Lindqvist P, Juhasz R, et al. Noise Reduction and Error Analysis for a Towed EM System[C]//2012 SEG Annual Meeting. Houston:Society of Exploration Geophysicists, 2012:1-5.
[9] Maclennan K, Li Y G. Denoising Multicomponent CSEM Data with Equivalent Source Processing Techniques[J]. Geophysics, 2013, 78(3):E125-E135.
[10] 余刚, 孙卫斌, 何展翔, 等. 打破国外深海可控源电磁勘探技术垄断促进我国海洋资源勘探开发能力提升:国家863计划"深水可控源电磁勘探系统开发"课题成果[J].科技成果管理与研究, 2018(6):73-76. Yu Gang, Sun Weibin, He Zhanxiang, et al. Breaking the Monopoly of Foreign Deep-Sea Controllable Source Electromagnetic Exploration Technology and Promoting the Improvement of My Country's Marine Resource Exploration and Development Capabilities:The National 863 Plan "Deep-Water Controllable Source Electromagnetic Exploration System Development" Project Achievement[J]. Management and Research on Scientific & Technological Achievements, 2018(6):73-76.
[11] 李予国, 段双敏. 海洋可控源电磁数据预处理方法研究[J]. 中国海洋大学学报(自然科学版), 2014, 44(10):106-112. Li Yuguo, Duan Shuangmin. Data Preprocessing of Marine Controlled-Source Electromagnetic Data[J]. Periodical of Ocean University of China, 2014, 44(10):106-112.
[12] 段双敏. 海洋可控源电磁方法在多瑙河古三角洲天然气水合物勘探中的应用研究[D]. 青岛:中国海洋大学, 2020. Duan Shuangmin. Research on the Application of Marine Controlled Source Electromagnetic Method in the Exploration of Natural Gas Hydrate in the Danube Paleo-Delta[D]. Qingdao:Ocean University of China,2020.
[13] 王铭, 景建恩, 邓明, 等. 海洋可控源电磁数据可视化预处理软件开发[J]. 地球物理学进展, 2016, 31(4):1845-1851. Wang Ming, Jing Jian'en, Deng Ming, et al. Development of Visualized Software for Data Preprocessing of Marine Controlled-Source Electromagnetic Method[J]. Progress in Geophysics, 2016, 31(4):1845-1851.
[14] 冯一帆. 海洋可控源电磁现场数据预处理软件开发[D].北京:中国地质大学(北京), 2019. Feng Yifan. Development of Electromagnetic Field Data Preprocessing Software for Marine Controllable Source[D]. Beijing:China University of Geosciences (Beijing), 2019.
[15] Zhang P, Deng M, Jing J N, et al. Marine Controlled-Source Electromagnetic Method Data De-noising Based on Compressive Sensing[J]. Journal of Applied Geophysics, 2020,177:104011.
[16] 林昕, 魏文博, 景建恩, 等. 提高海洋可控源电磁法信噪比的方法研究[J]. 地球物理学进展, 2009, 24(3):1047-1050. Lin Xin, Wei Wenbo, Jing Jian'en, et al. Study on Improving MCSEM Signal-To-Noise Ratio[J]. Progress in Geophysics, 2009, 24(3):1047-1050.
[17] 于彩霞. 海洋可控源电磁法数据处理研究[D]. 北京:中国地质大学(北京), 2010. Yu Caixia. Study on Marine Controlled-Source Electromagnetic Signal Processing[D]. Beijing:China University of Geosciences (Beijing), 2010.
[18] 刘宁. 海洋可控源电磁数据典型预处理及几种去噪方法研究[D].长春:吉林大学, 2015. Liu Ning. Preprocessing and Research of Denoising Methods for Marine Controlled Source Electromagnetic Data[D]. Changchun:Jilin University, 2015.
[19] 鲁瑶, 孙卫斌, 周亚朋, 等. GMECS系统海洋可控源电磁预处理模块[J].石油工业计算机应用, 2019, 27(增刊1):23-25. Lu Yao, Sun Weibin, Zhou Yapeng, et al. GMECS System Marine Controlled Source Electromagnetic Preprocessing Module[J]. Computer Applications of Petroleum, 2019, 27(Sup.1):23-25.
[20] Constable S C, Cox C S. Marine Controlled-Source Electromagnetic Sounding:2:The PEGASUS Experiment[J]. Journal of Geophysical Research Solid Earth, 1996, 101(B3):5519-5530.
[21] Fan Y R, Snieder E, Slob J, et al. Synthetic Aperture Controlled Source Electromagnetics[J]. Geophysical Research Letters, 2010, 37(13):L13305.
[22] Fan Y R, Snieder E, Slob J, et al. Steering and Focusing Diffusive Fields Using Synthetic Aperture[J]. Europhysics Letters, 2011, 95(3):34006.
[23] Fan Y R, Snieder E, Slob J, et al. Increasing the Sensitivity of Controlled-Source Electromagnetics with Synthetic Aperture[J]. Geophysics, 2012, 77(2):E135.
[24] Fan Y, Snieder R, Slob E, et al. Synthetic Aperture Controlled Source Electromagnetics[J]. Geophysical Research Letters, 2010, 37:L13305. doi:10.1029/2010GL043981.
[25] Kennedy J. Encyclopedia of Machine Learning[M]. Boston:Springer, 2011.
[26] Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proceedings of the IEEE International Joint Conference on Neural Networks. Perth:IEEE, 1995:1942-1948. doi:10.1109/ICNN.1995.488968.
[27] van den Bergh F. An Analysis of Particle Swarm Optimizers[D]. Pretoria:University of Pretoria, 2002.
[1] Huang Gaixian, Tian Bo, Zhou Yunxuan, Yuan Qing. Data Preprocessing Method of IoT Observation System in Coastal Wetland [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(6): 1805-1814.
[2] Xu Wei, Zhou Yunxuan, Shen Fang, Tian Bo, Yu Peng. Recognition and Extraction of Phragmites Australis Salt Marsh Vegetation in Chongming Tidal Flat from Sentinel-1A SAR Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1192-1200.
[3] YU Xian-chuan, LIU Li-wen, HU Dan, WANG Zhong-ni. Robust Ordinal Independent Component Analysis(ROICA) Applied to Mineral Resources Prediction [J]. J4, 2012, 42(3): 872-880.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .