Journal of Jilin University(Earth Science Edition) ›› 2021, Vol. 51 ›› Issue (6): 1908-1920.doi: 10.13278/j.cnki.jjuese.20200157

Previous Articles     Next Articles

Application of UAV Remote Sensing Technology in Geological Mapping in Gansu Beishan Area

Dai Junhao1, Xue Linfu1, Li Zhongtan1, Sang Xuejia2, Ma Jianxiong3   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China;
    3. Chongqing Survey Institute, Chongqing 401121, China
  • Received:2020-07-07 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the Geological Survey Project of China Geology Survey (DD20160050)

Abstract: The magmatic and metamorphic rocks in Gansu Beishan area are widely exposed, vegetation is sparse, and the terrain is gentle. It is an ideal area for UAV remote sensing geological mapping experiments. In order to solve the problems of traditional geological mapping, such as topography and environmental constraints, high investment, and long work cycle, etc., the 20 km2 geochemical exploration key work area in Changliushui area of Beishan was selected as a target, the DJI Phantom 4 professional drone was used to collect images, and the photoscan software was used to synthesize high-resolution orthophotos and three-dimensional models, so as to establish interpretation signs, and perform geological interpretation of the target area to obtain a more refined geological map than the previous 1:10 000 geological map. Compared with the traditional mapping method, this method can capture more detailed geological contents such as geological body shape, dike occurrence, and micro-faults, and this can provide a basis for dividing dike stages.

Key words: UAV, Gansu Beishan, geological mapping, remote sensing

CLC Number: 

  • P623
[1] 刘雪亚. 中国西部北山造山带的大地构造及其演化[C]//中国地质科学院地质研究所文集(28).[S. l.]:中国地质学会,1995:12. Liu Xueya. Geotectonics and Evolution of the Beishan Orogenic Belt in Western China[C]//Collected Works of Institute of Geology(28).[S. l.]:Chinese Academy of Geological Sciences, 1995:12.
[2] 苗来成,朱明帅,张福勤.北山地区中生代岩浆活动与成矿构造背景分析[J].中国地质,2014,41(4):1190-1204. Miao Laicheng, Zhu Mingshuai, Zhang Fuqin. Analysis of Mesozoic Magmatic Activity and Metallogenic Tectonic Setting in Beishan Area[J]. China Geology, 2014,41(4):1190-1204.
[3] 陈柏林,吴淦国,叶德金,等.北山地区金矿类型、成矿规律和找矿方向[J].地质力学学报,2001,7(3):217-223. Chen Bolin, Wu Ganguo, Ye Dejin, et al. Types, Metallogenic Regularities and Prospecting Directions of Gold Deposits in Beishan Area[J]. Journal of Geomechanics, 2001, 7(3):217-223.
[4] 王盛栋. 甘肃北山中部地区古生代洋板块地层重建与构造演化[D].北京:中国地质大学(北京),2017. Wang Shengdong. Stratigraphic Reconstruction and Tectonic Evolution of the Paleozoic Oceanic Plate in the Central Beishan Area of Gansu[D]. Beijing:China University of Geosciences(Beijing), 2017.
[5] 赵宏刚,梁积伟,王驹,等.甘肃北山算井子埃达克质花岗岩年代学、地球化学特征及其构造意义[J].地质学报,2019,93(2):329-352. Zhao Honggang, Liang Jiwei, Wang Ju, et al.Chronology, Geochemical Characteristics and Tectonic Significance of the Adakitic Granites in Suanjingzi, Beishan, Gansu[J]. Acta Geologica Sinica,2019,93(2):329-352.
[6] 徐杰,田金鹏.肃北县长流水金矿矿床地质特征与成矿分析[J].世界有色金属,2017(22):132,134. Xu Jie, Tian Jinpeng. Geological Characteristics and Metallogenic Analysis of Changliushui Gold Deposit in Subei County[J]. World Nonferrous Metals, 2017(22):132, 134.
[7] 李增达. 甘肃花牛山铅锌银多金属矿田岩浆成矿作用与找矿[D]. 北京:中国地质大学(北京),2018. Li Zengda. Magmatic Mineralization and Prospecting of the Huaniushan Lead-Zinc-Silver Polymetallic Ore Field in Gansu[D]. Beijing:China University of Geosciences (Beijing), 2018.
[8] 左国朝, 刘义科, 刘春燕. 甘新蒙北山地区构造格局及演化[J]. 甘肃地质学报, 2003,12(1):1-15. Zuo Guochao, Liu Yike, Liu Chunyan. Tectonic Framework and Evolution of Beishan Area in Ganxin, Mongolia[J]. Journal of Gansu Geology, 2003, 12(1):1-15.
[9] 任广利, 杨敏, 李健强,等. 高光谱蚀变信息在金矿找矿预测中的应用研究:以北山方山口金矿线索为例[J]. 国土资源遥感, 2017,29(3):182-190. Ren Guangli, Yang Min, Li Jianqiang, et al.Application of Hyperspectral Alteration Information in Gold Prospecting Prediction:Taking Beishan Fangshankou Gold Deposit as an Example[J]. Remote Sensing for Land and Resources, 2017,29(3):182-190.
[10] 刘德长, 田丰, 邱骏挺,等. 柳园-方山口地区航空高光谱遥感固体矿产探测及找矿效果[J]. 地质学报, 2017,91(12):190-204. Liu Dechang, Tian Feng, Qiu Junting, et al. Aerial Hyperspectral Remote Sensing Solid Mineral Exploration and Prospecting Effect in Liuyuan-Fangshankou Area[J]. Acta Geology Sinica, 2017,91(12):190-204.
[11] 何养珍,乔立斌,魏庆林,等. 甘肃省肃北县长流水金矿床地质普查报告[R]. 张掖:甘肃有色地质勘查局四队,2008. He Yangzhen, Qiao Libin, Wei Qinglin, et al. Report on the Geological Survey of the Changliushui Gold Deposit in Subei County, Gansu Province[R]. Zhangye:The Fourth Team of Gansu Nonferrous Geological Exploration Bureau, 2008.
[12] 巩颜学,蔡厚维,黄丕新,等. 花牛山幅K-46-108-A长流水幅K-46-108-B柳园镇幅K-46-108-C臭水沟幅K-46-108-D1/5万区域地质调查报告(地质部分)(物探、重砂、化探部分)[R]. 酒泉:甘肃省地矿局酒泉地质矿产调查队十四分队,1987. Gong Yanxue, Cai Houwei, Huang Pixin, et al. Huaniu Mountain Sheet K-46-108-A Changliushui Sheet K-46-108-B Liuyuan Town Sheet K-46-108-C Choushuigou Sheet K-46-108-D1:50000 Regional Geological Survey Report (Geological Part) (Physical Prospecting, Heavy Sand, Geochemical Prospecting Part)[R]. Jiuquan:The 14th Division of Jiuquan Geological and Mineral Survey Team, Gansu Bureau of Geology and Mineral Resources, 1987.
[13] 徐杰,段兴雷,郑海保,等. 甘肃省肃北县长流水金矿床补充详查地质报告[R]. 张掖:甘肃省有色金属地质勘查局张掖矿产勘查院, 2014. Xu Jie, Duan Xinglei, Zheng Haibao, et al. Supplementary Detailed Survey Geological Report of the Changliushui Gold Deposit in Subei County, Gansu Province[R]. Zhangye:Zhangye Mineral Exploration Institute, Non-Ferrous Metals Geological Exploration Bureau of Gansu Province, 2014.
[14] Ferrero A M, Migliazza M, Roncella R, et al. Rock Cliffs Hazard Analysis Based on Remote Geostructural Surveys:The Campione Del Garda Case Study (Lake Garda, Northern Italy)[J]. Geomorphology, 2011, 125:457-471.
[15] Nex F, Remondino F. UAV for 3D Mapping Applications:A Review[J]. Appl Geomatics, 2014, 6:1-15.
[16] Salvini R, Mastrorocco G, Seddaiu M, et al. The Use of an Unmanned Aerial Vehicle for Fracture Mapping Within a Marble Quarry (Carrara, Italy):Photogrammetry and Discrete Fracture Network Modelling[J]. Geomatics Natural Hazards & Risk,2016, 8:34-52.
[17] Vollgger S A, Cruden A R. Mapping Folds and Fractures in Basement and Cover Rocks Using UAV Photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia[J]. Struct Geol, 2016, 85:168-187.
[18] Wang J L, Zhu S. Refined Micro-Scale Geological Disaster Susceptibility Evaluation Based on UAV Tilt Photography Data and Weighted Certainty Factor Method in Mountainous Area[J]. Ecotoxicology and Environmental Safety, 2020, 189:110005.
[19] 韩文权,任幼蓉,赵少华.无人机遥感在应对地质灾害中的主要应用[J].地理空间信息,2011,9(5):6-8,163. Han Wenquan, Ren Yourong, Zhao Shaohua. The Main Application of Drone Remote Sensing in Response to Geological Disasters[J]. Geospatial Information, 2011, 9(5):6-8, 163.
[20] Niethammer U, James M R, Rothmund S, et al. UAV-Based Remote Sensing of the Super-Sauze Landslide:Evaluation and Results[J]. Engineering Geology, 2012, 128:2-11.
[21] 王凤艳,赵明宇,王明常,等.无人机摄影测量在矿山地质环境调查中的应用[J].吉林大学学报(地球科学版),2020,50(3):866-874. Wang Fengyan, Zhao Mingyu, Wang Mingchang, et al. Application of UAV Photogrammetry in Mine Geological Environment Investigation[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3):866-874.
[22] 邵延秀, 张波, 邹小波, 等. 采用无人机载LiDAR进行快速地质调查实践[J]. 地震地质,2017,39(6):1185-1197. Shao Yanxiu, Zhang Bo, Zou Xiaobo, et al. Practice of Rapid Geological Survey Using UAV-Borne LiDAR[J]. Seismology and Geology, 2017, 39(6):1185-1197.
[23] Cruden A, Vollgger S, Dering G, et al. High Spatial Resolution Mapping of Dykes Using Unmanned Aerial Vehicle (UAV) Photogrammetry:New Insights on Emplacement Processes[J]. Acta Geol Sin, 2016, 90:52-53.
[24] Dering G, Micklethwaite S, Barnes S J, et al. An Elevated Perspective:Dyke-Related Fracture Networks Analysed with UAV Photogrammetry[J]. Acta Geol Sin, 2016, 90:54-55.
[25] Sang X,Xue L, Ran X, et al, Intelligent High-Resolution Geological Mapping Based on SLIC-CNN[J]. ISPRS Int J Geo-Inf, 2020, 9:99.
[26] Zhang H, Chen N H, Gao B W, et al.Semi-Automatic Mapping of Dyke and Dyke-Related Fractures Using UAV-Based Photogrammetric Data:A Case Study From Sijiao Island, Coastal Southeastern China[J]. Journal of Structural Geology, 2020, 132:103971.
[27] 桑学佳. 无人机及深度学习在地质调查中的应用[D].长春:吉林大学,2018. Sang Xuejia. Application of Drones and Deep Learning in Geological Survey[D]. Changchun:Jilin University, 2018.
[1] Wang Boshuai, Pu Dongchuan, Li Tingting, Niu Xuefeng. Mapping of Urban Built-Up Area of Changchun City Based on Multi-Source Remote Sensing Images [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(4): 1284-1294.
[2] Qiao Zhongkun, Ma Guoqing, Yu Ping, Zhou Wenna, Zhang Zhihou, Jiao Jian, Zhou Shuai, Meng Zhaohai, Tang Shuiliang. Application of UAV Aeromagnetic Prospecting Based on Euler Deconvolution [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(2): 552-560.
[3] Wang Mingchang, Zhu Chunyu, Chen Xueye, Wang Fengyan, Li Tingting, Zhang Haiming, Han Youwen. Building Change Detectionin High Resolution Remote Sensing Images Based on FPN Res-Unet [J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1): 296-306.
[4] Wu Yanqing, Wang Shicheng, Ding Yuan, Wang Wenzheng, Yu Honglong, Wang Qing, Li Yang. Application of Remote Sensing in Uranium and Polymetallic Mineral Exploration in Xinchengzi Basin, Inner Mongolia [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1917-1928.
[5] Sun Liying, Yang Chen, Zhao Haishi, Chang Zhiyong. Remote Sensing Geochemical Inversion Model by Using Extreme Learning Machine [J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6): 1929-1938.
[6] Liu Changyuan, Liu Peng, Bi Xiaojun. Land Use Change Prediction Model Based on Adaptive Variable Filter [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(5): 1477-1485.
[7] Wu Yunxia, Lü Fengjun, Xing Lixin, Liu Xinxing. Prediction Model of Multiple Information Dry-Hot Rock in Dushancheng Area [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 880-892.
[8] He Jinxin, Jiang Tian, Dong Yongsheng, Han Kaixu, Ma Ning, Xiong Yue. Alteration Information Extraction Based on Remote Sensing of Landsat 8 in Gongchangling Area of Liaoning [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(3): 893-901.
[9] Fan Ruixue, Xing Lixin, Pan Jun, Shan Xuanlong, Zhong Weijing. Oil Sands Spectral Reflection Characteristics and Remote Sensing Application [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2): 603-610.
[10] Li Gang, Sun Guihua, Yao Yongjian, Zhu Boqin, Zhang Yaoming. Spatio-Temporal Evolution of the Sansha Bay Coastline [J]. Journal of Jilin University(Earth Science Edition), 2019, 49(1): 196-205.
[11] Wang Mingchang, Zhang Xinyue, Zhang Xuqing, Wang Fengyan, Niu Xuefeng, Wang Hong. GF-2 Image Classification Based on Extreme Learning Machine [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 373-378.
[12] Zhao Yuyan, Li Bing, Lu Jilong, Hao Libo, Zhao Yu, Wang Dongming. Geochemical and Geophysical Information Integration Technology for Geological Mapping at Shallow Overburden Area in Northeast China [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 318-333.
[13] Yan Baizhong, Qiu Shuwei, Xiao Changlai, Liang Xiujuan. Potential Geothermal Fields Remote Sensing Identification in Changbai Mountain Basalt Area [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(6): 1819-1828.
[14] Zhang Shiyue, Shu Longcang, Min Xing, Hu Huijie, Zou Zhike. Calculation of Precipitation Infiltration Recharge Based on Land-Use Type [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 860-867.
[15] Peng Ling, Xu Suning, Peng Junhuan. Regional Landslide Risk Assessment Using Multi-Source Remote Sensing Data [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 175-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .