Journal of Jilin University(Earth Science Edition) ›› 2024, Vol. 54 ›› Issue (1): 1-19.doi: 10.13278/j.cnki.jjuese.20230310

    Next Articles

The Relationship Between Isotopic Compositions of Metals, Non-Metal, and Rare Gases in Seafloor Hydrothermal Sulfides and Its Geological Significances

Zeng Zhigang1, 2, 3#br#

#br#
  

  1. 1. Institute of Oceanology/Key Laboratory of Marine Geology and Environment,  Chinese Academy of Sciences, Qingdao 266071,
    Shandong,China
    2. Laboratory for Marine Mineral Resources, Laoshan Laboratory, Qingdao 266061, Shandong,China
    3. College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao  266400, Shandong,China
  • Received:2023-10-20 Online:2024-01-26 Published:2024-03-11
  • Supported by:
    the National Natural Science Foundation of China (42330409, 42221005, 91958213), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB42020402), the National Basic Research and Development Program of China (2013CB429700) and the Taishan Scholars Program (ts201511061) 

Abstract: The isotopic composition of seafloor hydrothermal sulfides can not only trace their sources but also record the fluids and their precipitation processes. This article analyzes the isotopic compositions of metals (lead, rhenium, osmium, iron, copper, zinc), non-metal (sulfur), and rare gases in fluid inclusions of global seafloor hydrothermal sulfides, and explores the relationship between the isotopic compositions of metals, non-metal, and rare gases in sulfides. The results indicate that there is a negative correlation between sulfur isotopic composition and osmium, iron isotopic compositions, as well as between iron, lead, and helium isotopic compositions in seafloor hydrothermal sulfides. There is a positive correlation between osmium isotopic composition and iron isotopic composition, and between xenon isotopic composition and lead, osmium isotopic compositions. During the stage of magma degassing and material injecting fluid, sulfides are formed with the characteristics of low δ34SVCDT values (about 0‰) and high 3He/4He (>8 Ra), 40Ar/36Ar (>300), and 129Xe/132Xe (>0.99) ratios. In the stage of fluid-rock interaction, as lead-containing minerals in the rock continue to dissolve, i.e., the degree of fluid-rock interaction increases, the lead content of pyrite, chalcopyrite, and sphalerite precipitated in the fluid increases, accompanied by a slight decrease in the 206Pb/204Pb ratios. In the fluid-seawater mixing stage, with the increase of seawater influence degree, the Os content (about 0×10-9) in sulfides can sharply decreased, and the δ57Fe value (<-1.6‰), the 187Os/188Os ratio (>1)  significantly increases; With the enhancement of fluid-seawater mixing degree, the δ34SVCDT values of pyrite in sulfides will increase with a slight decrease in the 3He/4He, 40Ar/36Ar, and 129Xe/132Xe ratios in its fluid inclusions, while their 3He/4He ratios will decrease with a decrease in its 130Xe/132Xe ratios. The above indicates that by comprehensively analyzing the isotopic composition and content of metals, non-metal, and rare gases, and discussing their relationships, the effects of magma degassing, fluid-rock interaction, and fluid-seawater mixing on seafloor hydrothermal circulation can be revealed, and the degree of fluid-rock interaction and fluid-seawater mixing during sulfide precipitation can be understood.


Key words: metal, non-metal, and rare gas isotopes, the relationship between isotopic compositions, seafloor hydrothermal sulfide

CLC Number: 

  • P736.4
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHEN Li, NIE Lei, WANG Xiu-fan, LI Jin. Seismic Risk Analysis of Some Electric Power Equipment Station in Suizhong[J]. J4, 2005, 35(05): 641 -645 .
[5] JI Hong-jin,SUN Feng-yue2,CHEN Man,HU Da-qian,SHI Yan-xiang,PAN Xiang-qing. Geochemical Evaluation for Uncovered GoldBearing Structures in Jiaodong Area[J]. J4, 2005, 35(03): 308 -0312 .
[6] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[7] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[8] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[9] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[10] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .