Journal of Jilin University(Earth Science Edition) ›› 2024, Vol. 54 ›› Issue (4): 1316-1325.doi: 10.13278/j.cnki.jjuese.20230178

Previous Articles     Next Articles

Three-Dimensional Numerical Simulation of Ground Settlement Caused by Metro Shield Excavation in Jiangbei New District, Nanjing, China

Xu Chenghua 1, He Zhengyu 2, Liu Gang 1, Shi Wei 1, Luo Zujiang 2   

  1. 1. The First Geological Brigade of the Bureau of Geology and Mineral Resources of Jiangsu,Nanjing 210041,China
    2. School of Earth Sciences and Engineering,Hohai University,Nanjing 211100,China
  • Received:2023-07-21 Online:2024-07-26 Published:2024-07-26
  • Supported by:
    the Geological Science and Technology Innovation Project of Jiangsu Province (2022KY01),the Open Fund of Jiangsu Geo-Engineering Environment Intelligent Monitoring Engineering Research Centre (2021-ZNJKJJ-13) and the National Natural Science Foundation of China (41874014)

Abstract:  In order to study the ground settlement caused by subway shield construction, firstly,based on Biot consolidation theory, a visco-elastic-plastic constitutive relation of soil mass and the dynamic change of soil permeability is considered, a three-dimensional fully coupled numerical model is established. Then, taking the shield construction section from Maluowei Station to Shitang Park Station of Jiangbei New District of Nanjing Metro Line 11 as an example, the settlement of the shield section is simulated and predicted, and the model is calibrated. Finally, the model is used to simulate and predict the ground settlement law caused by shield excavation, and the parameter changes of soil above the shield arch and under the shield bottom are simulated. The results show that the measured ground settlement is in good agreement with the calculated values, and the model is reliable. Taking the second section of the model as an example, the settlement of the eastern line is in the range of 52.41-54.52 mm, and the settlement of the western line is in the range of 53.28-55.60 mm. The settlement of shield tunnel in the eastern line is symmetrically distributed in the center of the tunnel axis, and the cumulative ground settlement of the tunnel in the western line is larger between the axes after tunnel excavation. With the progress of excavation, the porosity, permeability coefficient and Poisson’s ratio of the soil above decreased, and the deformation modulus increased, while the change of the soil below was opposite.

Key words: ground settlement, Bio-consolidation theory, shield construction, three-dimensional full coupling;subway;tunnel

CLC Number: 

  • P641
[1] SUN Chao, BO Jing-shan, LIU Hong-shan, QI Wen-Hao. Study on Influencing Factors of Ground Settlement over Mined-Out Area [J]. J4, 2009, 39(3): 498-502.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Li-ren, ZHANG Yu-jie, ZHANG Yi-chun. Ordovician Nautiloid Fossils of Xainza Region,Tibet[J]. J4, 2005, 35(03): 273 -0282 .
[2] LI Bing-cheng. Preliminary Studies on Holocene Climatic In Fuping,Shaanxi Province[J]. J4, 2005, 35(03): 291 -0295 .
[3] HE Zhong-hua,YANG De-ming,WANG Tian-wu,ZHENG Chang-qing. SHRIMP U[CD*2]Pb Dating of Zircons from Two-Mica Granite in Baga Area in Gangdise Belt[J]. J4, 2005, 35(03): 302 -0307 .
[4] CHU Feng-you, SUN Guo-sheng,LI Xiao-min,MA Wei-lin, ZHAO Hong-qiao. The Growth Habit and Controlling Factors of the CobaltRich Crusts in Seamount of the Central Pacific[J]. J4, 2005, 35(03): 320 -0325 .
[5] LI Bin, MENG Zi-fang, LI Xiang-bo, LU Hong-xuan, ZHENG Min. The Structural Features and Depositional Systems of the Early Tertiary in the Biyang Depression[J]. J4, 2005, 35(03): 332 -0339 .
[6] LI Tao, WU Sheng-jun, CAI Shu-ming, XUE Huai-ping, YASUNORI Nakayama. Simulation Analysis of the Storage Capacity Based on DEM Before and After Connecting to Yangtze River in Zhangdu Lake[J]. J4, 2005, 35(03): 351 -0355 .
[7] KUANG Li-xiong,GUO Jian-hua, MEI Lian-fu, TONG Xiao-lan, YANG Li. Study on the Upheaval of the Bogeda Mountain Block from Angle of Oil and Gas Exploration[J]. J4, 2005, 35(03): 346 -0350 .
[8] ZHANG Guang-xin, DENG Wei, HE Yan, RAMSIS Salama. An Application of Hydrological Response Units in Assessment of Soil Salinization Risks[J]. J4, 2005, 35(03): 356 -0360 .
[9] WANG Qian, WU Zhi-fang, ZHANG Han-quan, MO Xiu-wen. The Application of Statistical Fractals to Describing the Reservoir Heterogeneity[J]. J4, 2005, 35(03): 340 -0345 .
[10] LIU Jia-jun, LI Zhi-ming,LIU Jian-ming,WANG Jian-ping,FENG Cai-xia, LU Wen-quan. Mineralogy of the Stibnite-Antimonselite Series in the Nature[J]. J4, 2005, 35(05): 545 -553 .