Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (2): 602-610.doi: 10.13278/j.cnki.jjuese.201502302

Previous Articles     Next Articles

Seismic Prediction for Sweet Spot Reservoir of Tight Oil

Zhu Chao1, Xia Zhiyuan1, Wang Chuanwu2, Song Guangyong1, Wei Xuebin2, Wang Peng2, Wang Haifeng2, Wang Bo2   

  1. 1. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China;
    2. Qinghai Oil Field Company, CNPC, Dunhuang 736202, Gansu, China
  • Received:2014-06-28 Published:2015-03-26

Abstract:

As tight oil reservoir has the characters of poor physical property, strong heterogeneity, smaller difference of wave-impedance between and surrounding rock, the conventional reservoir inversion method is difficult to predict. From the perspective of reservoir genesis, the authors take the Hongliuquan area of Qaidam basin as an example, aims at thin layers of tight marlite reservoir, explores a set of effective technology series to predict sweet spot distribution. Through rock physics analysis, we establish a lithology identification chart, on this basis, combine forward simulation of drilling wells, clear that the sweet spot reservoir has the respose characters of medium amplitude and frequency values in objective intervals, and use frequency division imaging, 90°phase rotation, spectral attribute-optimization technology, predict the sweet spot distribution of tight oil effectively, confirm that the Hong 34 well block is the main of the tight oil producting zone, and the northwest Hong 22, the southern Hong38 well block can be used as the favorable targets for further exploration. The prediction result has a high agreement with the real drillings, confirms the feasibility of this method.

Key words: rock physics, forward simulation, spectral attribute, tight marl, sweet-spot prediction, Qaidam basin

CLC Number: 

  • P631.81

[1] 邹才能, 朱如凯, 吴松涛, 等.常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J].石油学报, 2012, 33(2):173-187. Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as an Instance[J]. Acta Petrolei Sinica, 2012, 33(2):173-187.

[2] 贾承造, 郑民, 张永峰.中国非常规油气资源与勘探开发前景[J].石油勘探与开发, 2012, 39(2):129-136. Jia Chengzao, Zheng Min, Zhang Yongfeng. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development[J]. Petroleum Exploration and Development, 2012, 39(2):129-136.

[3] 贾承造, 邹才能, 李建忠, 等.中国致密油评价标准、主要类型、基本特征及资源前景[J].石油学报, 2012, 33(3):343-350. Jia Chengzao, Zou Caineng, Li Jianzhong, et al. Assessment Criteria, Main Types, Basic Features and Resource Prospects of the Tight Oil in China[J]. Acta Petrolei Sinica, 2012, 33(3):343-350.

[4] 赵政璋, 杜金虎.致密油气[M].北京:石油工业出版社, 2012:1-13. Zhao Zhengzhang, Du Jinhu. Tight Oil and Gas[M]. Beijing: Petroleum Industry Press, 2012:1-13.

[5] 孙赞东, 贾承造, 李相方, 等.非常规油气勘探与开发:上册[M].北京:石油工业出版社, 2011:1-150. Sun Zandong, Jia Chengzao, Li Xiangfang, et al. Unconventional Oil & Gas Exploration and Development: Upper Volumes[M]. Beijing: Petroleum Industry Press, 2011:1-150.

[6] Peyton L, Bottjer R, Partyka G.Interpretation of Incised Valleys Using New 3-D Seismic Techniques: A Case History Using Spectral Decomposition and Coherency[J]. The Leading Edge, 1998, 17 (10):1294-1298.

[7] 蔡瑞.基于谱分解技术的缝洞型碳酸盐岩溶洞识别方法[J].石油勘探与开发, 2005, 32(2):82-85. Cai Rui.Carbonate Cave Identification by Using a Spectral Decomposition Technique[J]. Petroleum Exploration and Development, 2005, 32(2):82-85.

[8] 范洪军, 李军, 肖毓祥, 等.地震分频技术在扇三角洲演化过程研究中的应用[J].石油与天然气地质, 2007, 28(5):682-686, 692. Fan Hongjun, Li Jun, Xiao Yuxiang, et al. Application of Seismic Frequency-Division Technology in the Study of Fan-Delta Evolution[J]. Oil & Gas Geology, 2007, 28(5):682-686, 692.

[9] 张延章, 尹寿鹏, 张巧玲, 等.地震分频技术的地质内涵及其效果分析[J].石油勘探与开发, 2006, 33(1):64-71. Zhang Yanzhang, Yin Shoupeng, Zhang Qiaoling, et al. Geologic Significance of the Seismic Spectral Decomposition Technology and Its Application Analysis[J]. Petroleum Exploration and Development, 2006, 33(1): 64-71.

[10] 李劲松, 李艳东, 张昕, 等. 地震谱分解技术在岩性油气藏描述中的应用[J]. 石油天然气学报, 2008, 30(2):239-241. Li Jinsong, Li Yandong, Zhang Xin, et al. Application of Seismic Spectral Decomposition in Lithological Reservoir Description[J]. Journal of Oil and Gas Technology, 2008, 30(2):239-241.

[11] Zeng H L, Backus M M. Interpretive Advantages of 90° Phase Wavelets: Part 1: Modeling[J]. Geophysics, 2005, 70(3):7-15.

[12] Zeng H L, Backus M M. Interpretive Advantages of 90° Phase Wavelets: Part 2: Seismic Applications[J]. Geophysics, 2005, 70(3):17-24.

[13] 乐友喜, 黄健良, 张阳, 等.地质模型约束下的地震储层预测技术及其在梨树断陷中的应用[J].吉林大学学报:地球科学版, 2013, 43(2):632-639. Yue Youxi, Huang Jianliang, Zhang Yang, et al. Seismic Reservoir Prediction Technology Constrained by Geology Model and the Application in Lishu Fault Depression [J]. Journal of Jilin University: Earth Science Edition, 2013, 43(2):632-639.

[14] 刘长利, 朱筱敏, 胡有山, 等. 地震沉积学在识别陆相湖泊浊积砂体中的应用[J]. 吉林大学学报:地球科学版, 2011, 41(3):657-664. Liu Changli, Zhu Xiaomin, Hu Youshan, et al. Application of Seismic Sedimentology on Lacustrine Turbidite Deposition Indetification[J]. Journal of Jilin University: Earth Science Edition, 2011, 41(3):657-664.

[15] Kallweit R S, Wood L C. The Limits of Resolution of Zero-Phase Wavelets[J]. Geophysics, 1982, 47(7):1035-1046.

[16] 杨宝俊, 牛滨华, 闰贫. 勘探地震学导论[M]. 长春:吉林科学技术出版社, 1992:75-137. Yang Baojun, Niu Binhua, Run Pin. Introduction of Exploration Seismology[M]. Changchun: Jilin Science and Technology Press, 1992:75-137.

[17] 俞寿朋.高分辨率地震勘探[M].北京:石油工业出版社, 1993:1-34. Yu Shoupeng. High Resolution Seismic Exploration[M]. Beijing: Petroleum Industry Press, 1993:1-34.

[18] Ricker N. Wavelet Contraction, Wavelet Expression, and the Control of Seismic Resolution[J]. Geophysics, 1953, 18(6):769-792.

[19] Widess M A. How Thin is a Thin Bed?[J]. Geophysics, 1973, 38(8): 1176-1254.

[20] 钱绍瑚, 刘来祥. 零相位子波的垂向分辨率[J]. 石油物探, 1988, 27(3):1-9. Qian Shaohu, Liu Laixiang. Vertical Resolution of Zero-Phase Wavelet[J]. Geophysical Prospecting for Petroleum, 1988, 27(3):1-9.

[21] 徐怀大, 王世凤, 陈开远. 地震地层学解释基础[M]. 北京:中国地质大学出版社, 1990: 83-97. Xu Huaida, Wang Shifeng, Chen Kaiyuan. Interpretation Basis of Seismic Stratigraphy[M]. Beijing: China University of Geosciences Press, 1990:83-97.

[22] Zeng H L, Hentz T F. High-Frequency Sequence Stratigraphy from Seismic Sedimentology:Applied to Miocene, Vermilion Block 50, Tiger Shoal Area, Offshore Louisiana[J]. AAPG Bulletin, 2004, 88(2):153-174.

[1] Tian Min, Dong Chunmei, Lin Chengyan, Chai Xiaoying, Wang Lijuan. Productivity Evaluation Method of Single Sand Body Gas Reservoir in Sebei-2 Biogenic Gas Field, Qaidam Basin [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1060-1069.
[2] Ju Yinjuan, Zhang Xiaoli, Zhang Yongshu, Chen Yan. Fracture Characteristics of Bedrock Reservoir in the North-Kunlun Faults Zone, Qaidam Basin [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1660-1671.
[3] Pei Junling, Zhou Zaizheng, Li Haibing, Sun Zhiming. Strike-Slip of Altyn Tagh Didn't Result in Qaidam Basin Rotation Since Middle-Miocene [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 163-174.
[4] Wang Yadong, Zheng Jianjing, Sun Guoqiang, Zheng Youwei, Liu Xingwang. Early Cenozoic Altyn Mountains Uplift Recorded by Detrital Zircon Fission Track Age in Northwest Qaidam Basin [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(5): 1447-1459.
[5] Zhang Guangzhi, Chen Jiaojiao, Chen Huaizhen, Zhang Jinqiang, Yin Xingyao. Quantitative Interpretation of Carbonate Gas Reservoir Based on Rock Physics Template [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(2): 630-638.
[6] Lu Jungang, Yao Yitong, Wang Li, Chen Shijia, Wang Liqun, Guan Junya, Zhang Huanxu, Tang Haiping. Oil Source and Mature Oil Exploration Potential of Yuejin Slope Area in the Qaidam Basin [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(3): 730-740.
[7] GAO Jun-peng, FANG Xiao-min, SONG Chun-hui, LI Sheng-xi, XUE Jian-ping. Tectonic-Thermo Events of Northern Tibetan Plateau: Evidence from Detrital Apatite Fission Track Data in Western Qaidam Basin [J]. J4, 2011, 41(5): 1466-1475.
[8] YIN Cheng-ming, REN Shou-mai, TIAN Li-yan. Effect of Altyn Tagh Fault to Southwest Qaidam Basin: Evidences from Analysis of Joints Data [J]. J4, 2011, 41(3): 724-734.
[9] LI Xiong-yan, LI Hong-qi, YIN Peng, CHEN Yi-han, ZHOU Jin-yu. Origin of Low Gas-Saturated Reservoirs in the Quaternary of Sanhu Area in Qaidam Basin [J]. J4, 2010, 40(6): 1241-1247.
[10] LIU Zhi-hong, WANG Peng, DIAO Cheng-xiang, SHA Qian, ZHOU Fei. Discovery of Cretaceous Compressional Structure in Northern Margin of Qaidam Basin and Its Geological Significance [J]. J4, 2010, 40(5): 979-985.
[11] LIU Zhi-hong, WANG Peng, LIU Yong-jiang, ZHAO Cheng-xiang, GAO Jun-yi, MO Chuan-biao. Structural Features and Determination of Deformation Time in the Nanyishan-Jiandingshan Area of Qaidam Basin [J]. J4, 2009, 39(5): 796-802.
[12] YIN Cheng-ming,LI Wei-min,R. Andrea,LIU Yong-jiang,CHEN Yuan-zhong,GONG Qing-lin. Cenozoic Climate Changes in the Qaidam Basin, Western China: Evidenced From Carbon and Oxygen Stable Isotope [J]. J4, 2007, 37(5): 901-0907.
[13] ZHANG Ji-cheng,JIANG Qi-gang,LI Yuan-hua,WANG Li-hua. Changes of Wetland in Qaidam Basin in the Past 50 Years and Analysis of Climatic Background [J]. J4, 2007, 37(4): 752-0758.
[14] WENG Ai-hua,WANG Xue-qiu. Forward Simulation with High Accuracy of Ground Nuclear Magnetic Resonance [J]. J4, 2007, 37(3): 620-0623.
[15] GUO Xin-zhuan, LIU Yong-jiang, GE Xiao-hong,YUAN Si-hua, SUN Zhi-ming, PEI Jun-ling, LI Wei-min. The Analyses of Cenozoic Sandstone Component in Hongsanhan No. 1 Area and Its Tectonic Implications [J]. J4, 2006, 36(02): 194-0201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!