Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (4): 1112-1120.doi: 10.13278/j.cnki.jjuese.201504114

Previous Articles     Next Articles

Relationship Between Elemental Ionic Potential,Together with Elemental Abundance, and Giant Ore-Deposits

Zhao Bo1,2, Wang Bin1, Shi Chenglong1, Liao Yuzhong1, Zhao Xin1, Zhang Tao1, Zhang Dehui1   

  1. 1. School of Earth Science and Resource, China University of Geosciences(Beijing), Beijing 100083, China;
    2. School Geology Engineering and Geomatics, Chang'an University, Xi'an 710064, China
  • Received:2014-11-02 Published:2015-07-26

Abstract:

Both elemental quality and quantity as well as their way of permutation and combination are widely considered to be the "genes" of ore-deposits. Significantly, ionic potential and Clark value can represent the basic elemental geochemical attributes which can be divided into both of "quality" and "quantity". Thus, we studied the relationship between such two indivisible geochemical properties of ore-elements and the tonnage accumulation index (TAI) of giant ore-deposits. There are three critical steps to achieve the formation of ore-deposits; and they are material source, transportation, and preservation. In terms of its control ability to elemental behaviors of transportation (and/or preservation?), an ionic potential must exerts a striking influence on its elemental ore-forming ability; so does the Clark value in terms of its control of material source and of some geochemical behaviors that are sensitive to elemental abundance and strongly affect the concentration in those rock-and ore-forming processes. The available and unique value of ionic potential of some individual elements was worked out; and the mathematic relationship between the numbers of TAI of global giant ore-deposits and elemental ionic potentials was subsequently depicted, which appears as an opening-up parabola. Whereas, there is a rather clear linear relationship between metal resource reserves stored in giant and supergiant ore deposits all over the world and the elemental Clark values. So, a larger value of metal abundance indicatel its regional superiority of resources.

Key words: ionic potential, Clark value, abundance, TAI(tonnage accumulation index), giant ore-deposits, correlativity

CLC Number: 

  • P59

[1] 张德会, 赵仑山. 地球化学[M]. 北京: 地质出版社, 2013: 106-109. Zhang Dehui, Zhao Lunshan. Geochemistry[M].Beijing: Geological Publishing House, 2013: 106-109.

[2] Laznicka P. Giant Ore Deposits: A Quantitative Approach[J]. Global Tectonics and Metallogeny, 1999, 2(1/2): 41-64.

[3] Laznicka P. Giant Metallic Deposits: A Century of Progress[J]. Ore Geology Reviews, 2014, 62: 259-14.

[4] 张德会, 金旭东, 毛世德, 等.成矿热液分类兼论岩浆热液的成矿效率[J]. 地学前缘, 2011, 18(5): 90-102. Zhang Dehui, Jin Xudong, Mao Shide, et al. The Classification of Ore-Forming Fluid and the Efficiency of Ore Formation of Magmatic Hydrothermal Solution[J]. Earth Science Frontiers, 2011, 18(5): 90-102.

[5] 赵波, 张德会. 离子电位对金属元素迁移和成矿的影响[J]. 矿物岩石地球化学通报, 2013, 32(2):262-268. Zhao Bo, Zhang Dehui. Ionic Potential Impact on Migration and Metallization of Metal Elements[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(2):262-268.

[6] 刘英俊, 曹励明, 李兆麟, 等. 元素地球化学[M].北京:科学出版社, 1984:5-303. Liu Yingjun, Cao Liming, Li Zhaolin, et al. Elemental Geochemistry[M]. Beijing: Science Press, 1984:5-303.

[7] 翟裕生. 矿床学[M]. 北京:地质出版社, 2010: 2-97. ZhaiYusheng. Metallogeny[M]. Beijing: Geological Publishing House,2010: 2-97.

[8] Railsback L B. An Earth Scientist's Periodic Table of the Elements and Their Ions[J]. Geology, 2003, 31(9): 737-740.

[9] Pirajno F. Hydrothermal Processes and Mineral Systems[M]. Berlin:Springer, 2008.

[10] 程裕淇, 王鸿祯. 地球科学大辞典[M]. 北京: 地质出版社, 2005. Cheng Yuqi, Wang Hongzhen. The Great Dictionary of Earth Sciences[M]. Beijing: Geological Publishing House, 2005.

[11] Mookherjee A, Panigrahi M K. Reserve Base in Relation to Crustal Abundance of Metals: Another Look[J]. Journal of Geochemical Exploration, 1994, 51: 1-9.

[12] 张德会, 龚庆杰.初论元素富集成矿的地球化学机理:以岩浆热液矿床的形成为例[J]. 地质地球化学, 2001, 29(3): 8-14. Zhang Dehui, Gong Qingjie. On the Geochemical Mechanisms of Enrichment and Ore Formation of Ore Metals[J]. Geology Geochemistry, 2001, 29(3): 8-14.

[13] Vigneresse J L.Chemical Reactivity Parameters (HSAB) Applied to Magma Evolution and Ore Formation[J]. Lithos, 2012, 153(15): 154-164.

[14] Barsukove V L, Durasova N A, Kovalenko N I, et al. Oxygen Fugacity and Tin Behavior in Metals and Fluids[J]. Geol,1987,38: 723-733.

[15] Art A,Migdisov A E,WilliamS J. An Experimental Study of Cassiterite Solubility in HCl-Bearing Water-Vapor at Temperatures up to 350℃: Implications for Tin Ore Formation[J].Chemical Geology,2005,217:29-40.

[16] Stemprok M, Solubility of Tin, Tungsten and Molybdenum Oxides in Felsic Magmas[J].Mineral Deposita,1990, 25(3):205-212.

[17] Hu X, Bi X, Hu R, et al. Experimental Study on Tin Partition Between Granitic Silicate Melt and Coexisting Aqueous Fluid[J]. Geochemical Journal, 2008, 42(2): 141-150.

[18] Walshe J L M, Solomon D J Whitford.The Role of the Mantle in the Genesis of Tin Deposits and Tin Provinces of Eastern Australia, Society of Economic Geologists, Inc.Economic Geology,2001, 106:297-305.

[19] Kigai I N. Redox Problems in the "Metallogenic Specialization" of Magmatic Rocks and the Genesis of Hydrothermal Ore Mineralization[J]. Petrology, 2011, 19(3): 303-321.

[20] Holzheid A, Borisov A, Palme H. The Effect of Oxygen Fugacity and Temperature on Solubilities of Nickel, Cobalt, and Molybdenum in Silicate Melts[J]. Geochimicaet Cosmochimica Acta, 1994, 58(8): 1975-1981.

[21] Rempel K U, Migdisov A A, Williams J A E.The Solubility and Speciation of Molybdenum in Water Vapourat Elevated Temperatures and Pressures: Implications for Ore Genesis[J]. Geochimica et Cosmochimica Acta, 2008, 70(3): 687-96.

[22] 凌洪飞.论花岗岩型铀矿床热液来源:来自氧逸度条件的制约[J].地质论评, 2011, 57(2): 193-206. Ling Hongfei. Origin of Hydrothermal Fluids of Granite-Type Uranium Deposits:Constraints from Redox Conditions[J]. Geological Review, 2011, 57(2): 193-206.

[23] 王学求. 大型矿床地球化学定量评价模型和方法[J].地学前缘,2000,10(1):257-261. Wang Xueqiu. A Geochemical Quantitative Assessment Model and Approach for Large Ore Deposits[J]. Earth Science Frontiers, 2000,10(1):257-261.

[24] Yuan H L.A Compendium of Geochemistry from Solar Nebula to the Human Brain[M]. Princeton:Princeton University Press, 2000: 3-34.

[25] Smith K S, Huyck L O. The Environmental Geochemistry of Mineral Deposits[J]. The Society of Economic Geologists, 1999, 6: 29-70.

[26] Rudnick R L, Gao S. Composition of the Continental Crust[J]. Treatise on Geochemistry, 2003, 3: 1-64.

[27] 赵鹏大.矿床统计预测[M].北京:地质出版社,1994:9-78. Zhao Pengda. Statistical Prediction of Mineral Depo-sits[M].Beijing: Geological Publishing House, 1994:9-78.

[28] 蒋敬业.应用地球化学[M].武汉:中国地质大学出版社, 2006: 2-45. Jiang Jingye. Applied Geochemistry[M]. Wuhan: China University of Geosciences Press, 2006: 2-45.

[29] 王登红, 陈毓川, 陈郑辉, 等. 南岭地区矿产资源形势分析和找矿方向研究[J].地质学报, 2007, 81(7):882-890. Wang Denghong, Chen Yuchuan, Chen Zhenghui, et al. Assessment on Mineral Resource in Nanling Region and Suggestion for Further Prospecting[J].Acta Geologica Sinica, 2007, 81(7):882-890.

[30] 戚长谋, 郝立波, 甘树才. 关于元素丰度问题[J]. 长春科技大学学报, 2000, 30(4): 336-337. Qi Changmou, Hao Libo, Gan Shucai. On Problem of Element Abundance[J].Journal of Changchun University of Science and Technology, 2000, 30(4): 336-337.

[31] 隋延辉, 戚长谋. 关于元素丰度与元素的分散和成相[J]. 吉林地质, 2005, 24(1): 5. Sui Yanhui, Qi Changmou. On Elemental Abundance as Well as Its Dispersion and Phase State[J]. Jilin Geology, 2005, 24(1): 5.

[32] 龚美菱.相态分析与地质找矿:II[M].北京:地质出版社, 2007: 1-78. Gong Meiling. Phase Analysis and Geological Prospecting:II[M]. Beijing: Geological Publishing House, 2007: 1-78.

[33] Shcherbakov Y G. The Distribution of Elements in the Geochemical Provinces and Ore Deposits[J]. Physics and Chemistry of the Earth, 1979, 11: 689-696.

[34] Xie X, Liu D, Xiang Y, et al. Geochemical Blocks for Predicting Large Ore Deposits: Concept and Methodology[J]. Journal of Geochemical Exploration, 2004, 84(2): 77-91.

[35] Xie X J. The Surficial Geochemical Expressions of Giant Ore deposits//Hodgson C J, Clark A H. Giant Ore Deposits: II. Kingston:Queens University, 1995: 479-492.

[1] Jiang Xiping, Wu Fenghuang, Jiang Yu, Xiu Liancun. Hyper-Spectral Mineral Abundance Inversion Based on FastICA Algorithm [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1681-1686.
[2] Wu Guozhong,Gu Zhihong,Xu Yanjun,Yang Fengjuan. Quantified Research on Potential of Pyrite Mineral Resource in Guangdong Province,China [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(4): 1129-1135.
[3] LEI Shuang-fang, HU Hui-ting, LIU Hai-ying, SHAO Ming-li, WANG Li-wu, ZHANG Shi-guang, HUANG Wen-biao, ZHONG Wei-wei, TUN Gao-ping. Gas Source Conditions and Exploration Potential of Deep Layer in Yingtai Fault Depression [J]. J4, 2010, 40(4): 912-920.
[4] FU Guang, PANG Lei. Quantitative Study on Formation Conditions of Different Reserves Abundance of Gas Reservoirs in Xujiaweizi Depression [J]. J4, 2009, 39(6): 976-982.
[5] FU Guang, GENG Qi, WANG You-gong, YANG Yong-liang. Pressure Matching Types between Caprock and Reservoir and Relation between Them and Gas Reserves Abundance in Gas Reservoir [J]. J4, 2008, 38(4): 587-0593.
[6] FANG Yan-na,LIAO Zi-sheng,CHEN Hong-yan, DONG Wei-hong. Correlativity Analysis of the Affect Factors on Groundwater Thermal Regime in the Plain Area of Central Jilin [J]. J4, 2006, 36(01): 66-0072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!