Journal of Jilin University(Earth Science Edition) ›› 2015, Vol. 45 ›› Issue (6): 1862-1869.doi: 10.13278/j.cnki.jjuese.201506304

Previous Articles     Next Articles

Numerical Simulation of Array Laterolog Response in Horizontal and Highly Deviated Wells

Zhu Peng1, Lin Chengyan1, Li Zhiqiang2, Zhao Wenji3, Zhang Hualian4   

  1. 1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China;
    2. China Research Institute of Radiowave Propagation, Xinxiang 453003, Henan, China;
    3. Wireline Logging Company, Daqing Drilling Engineering Company, Daqing 163412, Heilongjiang, China;
    4. Chongqing Institute of Geology&Mineral Resources, Chongqing 400042, China
  • Received:2015-02-05 Published:2015-11-26

Abstract:

According to the operating principles of array lateral electrode arrays in horizontal wells and highly deviated wells, electric field is studied by using multiple electric field superposition method, and the 3D finite element method is employed to simulate electric field distribution of various points, and then electric field linear superposition principles are used to get the array lateral logging response. Based on the computer simulation, five array lateral logging curve radial investigation depths are obtained. The array lateral radial detection depth is smaller than the deep lateral detection depth. The effect of well deviation and variation of depth of invasion on log response in the 3D formation model is examined; and the characteristics of array lateral log response in horizontal wells and highly deviated wells is analyzed. The simulation results are as follows: well deviation has a small impact on array lateral log response when the well deviation is less than 15°, and correction of well deflection is not necessary; while the well deviation must be corrected when the horizontal well deviation is more than 60° in a highly deviated well due to a greater difference of array lateral log response between highly deviated wells and vertical wells.

Key words: horizontal/highly deviated well, array lateral, finite element, log response

CLC Number: 

  • P631.8

[1] 李善军,肖永文,汪涵明,等.裂缝的双侧向测井响应的数学模型及裂缝孔隙度的定量计算[J].地球物理学报,1996,39(6):845-852. Li Shanjun,Xiao Yongwen,Wang Hanming,et al. Mathematical Model of Dual Laterolog Response to Fracture and Quantitative Interpretation of Fracture Porosity[J]. Acta Geophysica Sinica, 1996, 39(6): 845-852.

[2] 李善军.用三维有限元素法反演单一灰岩裂缝性储层的裂缝孔隙度和裂缝倾角[J].测井技术,1998,22(6):412-415. Li Shanjun.Inverting Fracture Porosity and Dip of Limestone Fractured Reservior Using 3-D FEM[J].Well Logging Technology, 1998, 22(6): 412-415.

[3] 刘福平,李善军,张庚骥.利用积分方程法计算双侧向测井仪的井眼校正曲线[J].地球物理学报,1997,40(6):857-866. Liu Fuping,Li Shanjun,Zhang Gengji.Computation of Borehole Correction Curves of Dual Laterolog Tool by Integral Equation Method[J]. Acta Geophysica Sinica, 1997, 40(6): 857-866.

[4] 刘振华,胡启,张建华.用有限元法计算侵入条件下双侧向测井仪器响应[J].石油仪器,1994,8(3):149-152. Liu Zhenhua,Hu Qi,Zhang Jianhua.Calculating Intrusion by the Finite Element Method Under the Condition of Dual Laterolog Tool Response[J]. Petroleum Instruments, 1994, 8(3): 149-152.

[5] Chemali R, Gianzero S, Su S M.The Dual Laterolog in Common Complex Situations[C]// SPWLA 29th Annual Logging Symposium. San Antonio: [s.n.], 1988: 5-8.

[6] Chen Y H, Chew W C, Zhang H J. A Novel Array Latero Log Method[J]. Log Analyst, 1998, 39(1): 23-30.

[7] Smits J W, Dubourg I, Luling M G, et al. Improved Resistivity Interpretation Utilizing a New Array Laterolog Tool and Associated Inversion Processing[C]//Annual Technical Conference and Exhibition of the Society of Petroleum Engineers. New Orleans: SPE, 1998: 831-844.

[8] 邓少贵,李智强,陈华.煤层气储层裂缝阵列侧向测井响应数值模拟与分析[J].煤田地质与勘探,2010,38(3):55-60. Deng Shaogui,Li Zhiqiang,Chen Hua.The Simulation and Analysis of Lateral Log Response of Fracture in Coalbed Methane Reservior[J]. Coal Geology & Exploration, 2010, 38(3): 55-60.

[9] 李智强,范宜仁,邓少贵,等.基于改进差分进化算法的阵列侧向测井反演[J].吉林大学学报:地球科学版,2010,40(5):1199-1204. Li Zhiqiang,Fan Yiren,Deng Shaogui,et al. Inversion of Array Laterolog by Improved Difference Evolution[J]. Journal of Jilin University: Earth Science Edition, 2010, 40 (5): 1199-1204.

[10] 朱大伟,邓少贵,范宜仁,等.大斜度井双侧向测井响应数值模拟研究[J].测井技术,2005,29(3):208-211. Zhu Dawei, Deng Shaogui, Fan Yiren, et al. Numerical Simulation of Dual Laterolog Response in Highly Deviated Wells[J]. Well Log Technology, 2005, 29(3): 208-211.

[11] 李大潜.有限元素法在电法测井中的应用[M].北京:石油工业出版社,1980:72-129. Li Daqian. Finite Element Method in the Application of the Electrical Logging[M]. Beijing: Petroleum Industry Press, 1980: 72-129.

[12] Clavier C.The Challenge of Logging Horizontal Wells[J]. Log Analyst, 1991, 32(2): 63-84.

[13] Sibbit A M, Faivre O. The Dual Laterolog Response in Fractured Rocks[C]// SPWLA 26th Annual Logging Symposium. Dallas: [s.n.], 1985: 17-20.

[14] 张庚骥.电法测井[M].东营:石油大学出版社,1996. Zhang Gengji. Electrical Logging[M]. Dongying: University of Petroleum Press, 1996.

[15] 高杰,谢然红.大斜度井侧向测井三维正演数值模拟及曲线快速校正方法研究[J].石油勘探与开发,2000,27(2):69-71. Gao Jie, Xie Ranhong. 3D Numerical Forward Modeling and Fast Correction of Dual-Laterolog for High Angle Deviated Wells[J]. Petroleum Exploration and Development, 2000, 27(2): 69-71.

[1] Zhang Bo, Cao Hongkai, Sun Jianmeng, Zhang Pengyun, Yan Weichao. Numerical Simulation of Response Characteristics of Array Induction Logging in Heavy Oil Thermal Recovery Formation [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1277-1286.
[2] Zeng Zhaofa, Huo Zhijun, Li Wenben, Li Jing, Zhao Xueyu, He Rongqin. 3D Vector Finite-Element Airborne Electromagnetic Modelling in an Arbitrary Anisotropic Medium [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 433-444.
[3] Luo Tianya, Xiong Bin, Cai Hongzhu, Chen Xin, Liu Yunlong, Lan Huaikang, Li Zuqiang, Liang Zhuo. Magnetotelluric Responses of Two-Dimensional Complex Conductivity Structures [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 215-223.
[4] Gao Jianshen, Sun Jianmeng, Jiang Yanjiao, Cui Likai. Effect of Electrode Array Structures in Laterolog and a New Array Measurement Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1874-1883.
[5] Yan Jiabin, Huang Xiangyu. Vector Finite Element Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(5): 1538-1549.
[6] Jiang Fuyu, Xie Leilei, Chang Wenkai, Huang Yan, Zhang Zuohong. Forward Calculation of Three Dimensional Gravity Vector Using Finite Element Method [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4): 1217-1226.
[7] Luo Shengyuan, He Sheng, Jin Qiuyue, Yang Ruizhi, Zhang Junli. Overpressure System Classification and Structure Characteristic in Bonan Sag [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 37-51.
[8] Tang Wenwu, Liu Jianxin,Tong Xiaozhong. Finite Element Forward Modeling on Line Source of FCSEM for Continuous Conductivity [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(5): 1646-1654.
[9] Liu Changjun, Zhao Hua, Zhang Shunfu, Ding Liuqian. Finite Element Analysis on Unsteady Seepage Field of Groundwater Reservoir of Tailan River During the Pumping Water of the Radiation Well [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(3): 922-930.
[10] Dai Liming,Li Sanzhong,Lou Da, Suo Yanhui,Liu Xin,Yu Shan,Zhou Shuhui. Numerical Modeling of Present-Day Structural Stress of Major Active Blocks in the Asian Continent [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(2): 469-483.
[11] Tang Jingtian, Xue Shuai. Influence of Truncated Boundary in FEM Numerical Simulation of MT [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 267-274.
[12] Nian Tingkai,Zhang Keli,Liu Hongshuai,Xu Haiyang. Stability and Failure Mechanism of ThreeDimensional Slope Using Strength Reduction Method [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(1): 178-185.
[13] LI Yong, LIN Pin-rong, LI Tong-lin, WANG You-xue, SHANG Xiao. Finite Element Method for Solving Anomalous Complex Potential of 2.5-D Complex Resistivity [J]. J4, 2011, 41(5): 1596-1604.
[14] WANG Xin-min, CUI Hua-hui, LIU Xiang-an. Non-Standard Galerkin Finite Element Method for Solving Unsteady Advection-Dominant Groundwater Transport Model [J]. J4, 2011, 41(3): 812-818.
[15] LIU Hong-shuai, NIAN Ting-kai, WAN Shao-shi. Effect of Boundary Constraint Condition on the Stability Analysis of 3D Slope [J]. J4, 2010, 40(3): 638-644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!