Journal of Jilin University(Earth Science Edition) ›› 2018, Vol. 48 ›› Issue (4): 1277-1286.doi: 10.13278/j.cnki.jjuese.20170291

Previous Articles    

Numerical Simulation of Response Characteristics of Array Induction Logging in Heavy Oil Thermal Recovery Formation

Zhang Bo1, Cao Hongkai2, Sun Jianmeng2, Zhang Pengyun2, Yan Weichao2   

  1. 1. Sinopec Shengli Well Logging Company, Dongying 257000, Shandong, China;
    2. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2017-11-08 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41574122) and National Science and Technology Major Projects (16ZX05006002-004)

Abstract: The unique temperature change rule of heavy oil thermal recovery wells' formation directly affects the resistivity of the target layer and surrounding rock, leading to the changes of array induction logging responses. Therefore, it is important to understand the effect of formation temperature on the array induction logging response, which is vital for acquiring the formation resistivity more accurately. In this study, the relationship between the formation temperature and formation resistivity is used to simulate the response of the array induction logging under the different formation temperatures and different stratigraphic structures by the Finite element method. The results show that the apparent resistivity of the different coil structure sub-arrays decreases with the increase of the formation temperature, and the declining rate of the apparent resistivity is related to the formation temperature, the coil structure, and the real resistivity. The target layer and surrounding rock resistivity, temperature and thickness of the target layer in the three-step stratum affect the logging response, thus the resistivity curves of each sub-array show a rising shape from the edge of the target layer to the surrounding formation. Through the analysis and study of these response characteristics, combined with the comparison and verification of the Well G1 in the oilfield, the simulation results clearly illustrated the characteristics of the abnormal response of field array induction logging.

Key words: formation temperature, the array induction logging, the finite element method, heavy oil thermal recovery formation

CLC Number: 

  • P631.8
[1] 刘丹. 高分辨率阵列感应测井在苏里格致密砂岩储层评价中的应用[D].长春:吉林大学, 2016. Liu Dan. Application of HDIL in the Evaluation of Tight Sandstone Reservoirs in Sulige Area[D]. Changchun:Jilin University, 2016.
[2] 李萌. 用阵列感应测井评价地层压力[D]. 荆州:长江大学, 2016. Li Meng. Research on Prediction Method of Formation Pressure from Array Induction Logs[D]. Jingzhou:Yangtze University, 2016.
[3] 周峰, 孟庆鑫, 胡祥云,等. 利用阵列感应测井进行储层渗透率评价[J]. 地球物理学报, 2016, 59(11):4360-4371. Zhou Feng, Meng Qingxin, Hu Xiangyun, et al. Evaluation of Reservoir Permeability Using Array Induction Logging[J]. Chinese Journal of Geophysics, 2016, 59(11):4360-4371.
[4] 李波. 应用阵列感应资料识别油水层[J]. 当代化工研究, 2017, 26(3):34-35. Li Bo. Application of Multi-Array Induction Data in the Recognition of Oil-Water Layer[J]. Modern Chemical Research, 2017, 26(3):34-35.
[5] 杜炳锐. 电法在深部地热勘查中的应用研究[D]. 成都:成都理工大学, 2011. Du Bingrui. The Study of Electrical Prospecting in the Deep Geothermal Investigation[D]. Chengdu:Chengdu University of Technology, 2011.
[6] 耿娜娜. 稠油热采井高温防砂技术研究[D]. 青岛:中国石油大学(华东),2007. Geng Nana. The Technique of Sand Control for Heavy Oil Well at High Temperature[D]. Qingdao:China University of Petroleum. 2007.
[7] 郭宽良. 数值计算传热学[M]. 合肥:安徽科学技术出版社, 1987. Guo Kuanliang. Numerical Computation Heat Transfer[M]. Hefei:Anhui Science and Technology Publishing House, 1987.
[8] 施天谟. 计算传热学[M]. 北京:科学出版社, 1987. Shi Tianmo. Calculate Heat Transfer[M]. Beijing:Science Press, 1987.
[9] 李大潜. 有限元素法在电法测井中的应用[M]. 北京:石油工业出版社, 1984. Li Daqian. Application of Finite Element Method in Electrical Logging[M]. Beijing:Petroleum Industry Press, 1980.
[10] 邓少贵, 李智强, 范宜仁,等. 斜井泥浆侵入仿真及其阵列侧向测井响应数值模拟[J]. 地球物理学报, 2010, 53(4):994-1000. Deng Shaogui, Li Zhiqiang, Fan Yiren, et al. Numerical Simulation of Mud Invasion and Its Array Laterolog Response in Deviated Wells[J]. Chinese Journal of Geophys, 2010, 53(4):994-1000.
[11] 邓少贵, 莫宣学, 卢春利,等. 缝-洞型地层缝洞的双侧向测井响应数值模拟[J]. 石油勘探与开发, 2012, 39(6):706-712. Deng Shaogui, Mo Xuanxue, Lu Chunli, et al. Numerical Simulation of the Dual Laterolog Response to Fractures and Caves in Fractured Cavernous Formation[J]. Petroleum Exploration and Development, 2012, 39(6):706-712.
[12] 仵杰, 李宇腾, 付晨东,等. 钻遇断层水平井地层模型的阵列感应测井响应特性数值模拟[J]. 测井技术, 2017, 41(3):266-271. Wu Jie, Li Yuteng, Fu Chendong, et al. Numerical Simulation of Response Characteristics to the Array Indication Logging in the Horizontal Well Penetrating Faults[J]. Well Logging Technology, 2017, 41(3):266-271.
[13] 仵杰,史盼盼,陈延军,等. 阵列感应测井在斜井和水平井中的响应特性[J].测井技术, 2016, 40(2):152-160. Wu Jie, Shi Panpan, Chen Yanjun, et al. Response Characteristics of Array Induction Logging in Deviated and Horizontal Well[J]. Well Logging Technology, 2016, 40(2):152-160.
[14] 王昌学, 储昭坦, 肖承文,等. 井环境对阵列感应测井响应的影响分析[J]. 地球物理学报, 2013, 56(4):1392-1403. Wang Changxue, Chu Zhaotan, Xiao Chengwen, et al. The Analysis of Effect of the Borehole Environment on Response of Array Induction Logging[J]. Chinese Journal of Geophys, 2013, 56(4):1392-1403.
[15] 王钰楠, 关静. 阵列感应测井在直井和斜井中的对比[J].计算机时代,2017(2):55-56. Wang Yunan, Guan Jing. Comparison of Array Induction Logging in Vertical Well and Deviated Well[J]. Computer Era, 2017(2):55-56.
[16] 姜艳娇,孙建孟,高建申,等. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J].吉林大学学报(地球科学版),2017,47(1):265-278. Jiang Yanjiao, Sun Jianmeng, Gao Jianshen, et al. Numerical Simulation of Mud Invasion Around the Borehole in Low Permeability Reservoir and a Method for Array Induction Log Resistivity Correction[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):265-278.
[17] 陈刚. 碳酸盐岩储层温度特征及温度测井资料应用研究[D].长春:吉林大学, 2013. Chen Gang. The Research of Temperature Characteristics in Carbonate Reservoirs and Temperature Logging Data Application[D]. Changchun:Jilin University, 2013.
[18] 周新刚. 基于有限元法的水平井阵列感应测井响应数值计算研究[D].西安:西安石油大学,2012. Zhou Xingang. Numerical Simulation of Responses of Array Induction Loggong in Horizontal Wells Based on the FEM[D]. Xi'an:Xi'an Shiyou University, 2012.
[19] 张建华,刘振华,仵杰. 电法测井原理与应用[M].西安:西北大学出版社,2002. Zhang Jianhua, Liu Zhenhua, Wu Jie. Principle and Application of Electrical Well Logging[M]. Xi'an:Northwest University Press, 2002.
[1] Liao Dongliang, Zeng Yijin. Establishment of Formation Shear Fracture Model by Logging Data [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(4): 1268-1276.
[2] Pan Baozhi, Liu Wenbin, Zhang Lihua, Guo Yuhang, Aruhan. A Method for Improving Accuracy of Reservoir Fracture Identification [J]. Journal of Jilin University(Earth Science Edition), 2018, 48(1): 298-306.
[3] Li Zhenling, Shen Jinsong, Li Xining, Wang Lei, Dan Weining, Guo Sen, Zhu Zhongmin, Yu Renjiang. Estimating Porosity Spectrum of Fracture and Karst Cave from Conductivity Image by Morphological Filtering [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1295-1307.
[4] Xiao Fan, Chen Jianguo. Application of PPC Model Combined with RCGA to Identify and Extract Geochemical Anomaly [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4): 1319-1330.
[5] Zhang Hengrong, He Shenglin, Wu Jinbo, Wu Yixiong, Liang Yunan. A New Method for Predicting Permeability Based on Modified Kozeny-Carmen Equation [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(3): 899-906.
[6] JiangYanjiao, Sun Jianmeng, Gao Jianshen, Shao Weizhi, Chi Xiurong, Chai Xiyuan. Numerical Simulation of Mud Invasion Around the Borehole in Low Permeability Reservoir and a Method for Array Induction Log Resistivity Correction [J]. Journal of Jilin University(Earth Science Edition), 2017, 47(1): 265-278.
[7] Gao Jianshen, Sun Jianmeng, Jiang Yanjiao, Cui Likai. Effect of Electrode Array Structures in Laterolog and a New Array Measurement Method [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6): 1874-1883.
[8] Pan Baozhi, Jiang Bici, Liu Wenbin, Fang Chunhui, Zhang Rui. Gas-Bearing Logging Features and Quantitative Evaluation for Tight Sandstone Reservoirs [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(3): 930-937.
[9] Zhang Xinpei, Yu Xuefeng. Using Geophysical Information to Describe Effective Reservoirs of Archean Buried Hill [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 270-278.
[10] Zhao Jun, Dai Xinyun, Gu Li, Qi Xinzhong, Chen Weizhong. Method of Permeability Model Establishment Based on the Complex Reservoir Controlled by Particle-Size [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 279-285.
[11] Zheng Xiangwei, Wu Jian, He Shenglin, Hu Xiangyang, Liang Yunan. Fine Evaluation of Permeability of Conglomerate Reservoir Based on Flow Unit [J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1): 286-294.
[12] Jin Bo, Huang Xianxiong, Chang Guangfa, Zhang Shengbin, Fu Haibo, Li Tiezhu. Types and Distribution of Carboniferous Carbonate Reservoirs in Southern Д Area of Pre-Caspian Basin [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(6): 2042-2050.
[13] Zhang Zhongqing, Pang Bingqiang. A Novel Approach for Electromagnetic Logging While Drilling Data Processing [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(5): 1720-1726.
[14] Song Yanjie, Jiang Yanjiao, Song Yang, Zhang Yini. Experimental on the Influencing Factors of m and n of Low Resistivity Oil Reservoirs in Southern Gulong Area [J]. Journal of Jilin University(Earth Science Edition), 2014, 44(2): 704-714.
[15] Yang Zhen,Yang Jinzhou,Han Laiju. Numerical Simulation and Application of Azimuthal Propagation Resistivity Imaging While Drilling [J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 2035-2043.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Mingchang, Zhang Xinyue, Zhang Xuqing, Wang Fengyan, Niu Xuefeng, Wang Hong. GF-2 Image Classification Based on Extreme Learning Machine[J]. Journal of Jilin University(Earth Science Edition), 2018, 48(2): 373 -378 .