Journal of Jilin University(Earth Science Edition) ›› 2016, Vol. 46 ›› Issue (1): 262-269.doi: 10.13278/j.cnki.jjuese.201601303

Previous Articles     Next Articles

Wavelet Entropy Threshold Seismic Signal Denoising Based on Empirical Mode Decomposition (EMD)

Liu Xia1, Huang Yang1, Huang Jing2, Duan Zhiwei1   

  1. 1. School of Electrical Engineering & Information, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Sichuan Petroleum Construction CO. LTD, Chengdu 610000, China
  • Received:2015-01-23 Online:2016-01-26 Published:2016-01-26
  • Supported by:

    Supported by Natural Science Foundation of Heilongjiang Province(F201404)

Abstract:

In view of the threshold of empirical mode decomposition (EMD) threshold denoising algorithm selected by experience, and its inability to effectively distinguish useful information in the intrinsic mode function, the authors use the wavelet transform of the intrinsic mode function to process each layer of wavelet coefficients so as to highlight the effective information and suppress noise. After the effective signals and the mutation points of the detail coefficients are set to zero, the new detail coefficients are equally divided into several intervals. We select the wavelet entropy as the high frequency wavelet coefficients of the architectural interval average noise variance, and calculated the threshold value. The threshold selection method is based on the characteristics of the wavelet entropy, adapted to the energy characteristics of the corresponding scale signal itself in determination of the scale of the threshold. The algorithm is applied to the simulation signals and real seismic signal denoising. The results show that the method is better than that of the wavelet threshold denoising based on EMD; at the same time it can better protect the effective signals.

Key words: empirical mode decomposition (EMD), wavelet entropy threshold, random noise suppression, SNR

CLC Number: 

  • P631.4

[1] 王玉英.地震勘探信号降噪处理技术研究[D].大庆:大庆石油学院,2006:1-8. Wang Yuying.Seismic Prospecting Signal Denoise Disposal Technology Research[D].Daqing:Daqing Petroleum Institution,2006:1-8.

[2] 朱晓明.工程地震信号去噪技术研究[D].青岛:中国海洋大学,2007:1-14. Zhu Xiaoming.Research of Engneering Seismic Data Denoise Disposal Technology[D].Qingdao:Ocean University of China,2007:1-14.

[3] 巩向博,韩立国,王恩利,等.压制噪声的高分辨率Radon变换法[J].吉林大学学报(地球科学版),2006,39(1):152-157. Gong Xiangbo,Han Liguo,Wang Enli,et al.Denoising via High Resolution Radon Transform[J].Journal of Jinlin University(Earth Science Edition),2006,39(1):152-157.

[4] 张孝珍,董汉强,侯国文,等.地震勘探中的去噪技术新进展[J].勘探地球物理进展,2009,32(3):172-178. Zhang Xiaozhen,Dong Hanqiang,Hou Guowen,et al.Advances in Seismic Exploration Technology Denoising[J].Progress in Exploration Geophysics,2009,32(3):172-178.

[5] Candes E,Demanet L,Donoho D,et al.Fast Discrete Curvelet Transforms[J].Multiscal Modeling and Simulation,2006,5(3):861-899.

[6] 魏童.小波变换在探地雷达信号中的应用[D].西安:长安大学,2009:14-18. Wei Tong.The Application of Wavelet Transform for GPR Signal[D].Xi'an:Chang'an University,2009:14-18.

[7] Donoho D.De-Noising by Soft-Thresholding[J].IEEE Trans on IT,1995,3:613-627.

[8] Huang N E,Shen Z,Long S R,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J].Proc Rsoc Lond,1998,454:56-78.

[9] 王婷.EMD算法研究及其在信号去噪中的应用[D].哈尔滨:哈尔滨工程大学,2010. Wang Ting.Research on EMD Algorithm and Its Application in Signal Denoising[D].Harbin:Harbin Engineering University,2010.

[10] Huang N E.Review of Empirical Mode Decompo-sition Analysis[J].Proc of SPIE,2001(4391):71-79.

[11] 杜修力,何立志,侯伟.基于经验模态的(EMD)的小波阈值除噪方法[J].北京工业大学学报,2007,33(3):264-271. Du Xiuli,He Lizhi,Hou Wei.A Study of Wavelet Threshold Denoising Based on Empirical Mode Decomposition(EMD)[J].Journal of Beijing University of Technology,2007,33(3):264-271.

[12] 李文,刘霞,段玉波,等.基于小波熵与相关性相结合的小波模极大值地震信号去噪[J].地震学报,2012,34(6):841-850. Li Wen,Liu Xia,Duan Yubo,et al.Wavelet Modulus Maxima Denoising of Seismic Signals Based on Combined Wavelet Entropy and Correlation[J].Acta Seismologica Sinica,2012,34(6):841-850.

[13] 李文,刘霞,段玉波,等.基于小波熵和相关性的高分辨率阈值去噪方法[J].数据采集与处理,2013,28(3):371-375. Li Wen,Liu Xia,Duan Yubo,et al.High-Resolution Threshold Denoising Method Based on Wavelet Entropy and Correlation[J].Journal of Data Acquisition and Processing,2013,28(3):371-375.

[14] Rosso S A,Blanco S,Yordanova J,et al.Wavelet En-tropy:A New Tool for Analysis of Short Duration Brain Electrical Signals[J].Journal of Neuroscience Methods,2001,105:65-75.

[15] 吴雅娟,高兴,王辉,等.改进的小波阈值法在测井曲线去噪中的应用[J].计算机系统应用,2013,22(3):182-185. Wu Yajuan,Gao Xing,Wang Hui,et al.Application of Improved Wavelet Threshold Method to Logging Curves Denoising[J].Computer Systems & Applications,2013,22(3):182-185.

[16] 徐明林.基于小波降噪和经验模态分解的滚动轴承故障诊断[D].哈尔滨:哈尔滨工业大学,2013. Xu Minglin.Fault Diagnosis of Rolling Element Bearing Based on Wavelet Denoising and Empirical Mode Decomposition[D].Harbin:Harbin Institute of Technology,2013.

[1] Liu Cai, Cui Fangzi, Liu Yang, Wang Dian, Liu Dianmi, Zhang Peng. Threshold Denoising Method Based on New Seislet Transform in the Condition of Low SNR [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 293-301.
[2] Jia Haiqing, Jiang Tao, Xu Xuechun, Ge Lihua, Lin Jun, Yang Zhichao. Analysis of the Pulse Noise in Seismic Vibrator Record [J]. Journal of Jilin University(Earth Science Edition), 2015, 45(1): 302-311.
[3] XI Xiao-yu, LIU Hong. The Application of HHT Method in Study of Seismic Cycle [J]. J4, 2007, 37(3): 624-0628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!